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Abstract—Depth perception plays an essential role in the
viewer experience for immersive virtual reality (VR) visual
environments. However, previous research investigations in the
depth quality of 3D/stereoscopic images are rather limited, and
in particular, are largely lacking for 3D viewing of 360-degree
omnidirectional content. In this work, we make one of the first
attempts to develop an objective quality assessment model named
depth quality index (DQI) for efficient no-reference (NR) depth
quality assessment of stereoscopic omnidirectional images. Moti-
vated by the perceptual characteristics of the human visual sys-
tem (HVS), the proposed DQI is built upon multi-color-channel,
adaptive viewport selection, and interocular discrepancy features.
Experimental results demonstrate that the proposed method
outperforms state-of-the-art image quality assessment (IQA) and
depth quality assessment (DQA) approaches in predicting the
perceptual depth quality when tested using both single-viewport
and omnidirectional stereoscopic image databases. Furthermore,
we demonstrate that combining the proposed depth quality model
with existing IQA methods significantly boosts the performance
in predicting the overall quality of 3D omnidirectional images.

Index Terms—Depth perception, overall quality, no-reference,
3D omnidirectional images, multi-color-channel, adaptive view-
port selection, interocular discrepancy, human visual system.

I. INTRODUCTION

THERE has been a rapid development of virtual reality
(VR) technology and a growing popularity of VR devices

in recent years. A great amount of VR content has been
acquired, stored, transmitted, and displayed in the form of
360-degree omnidirectional images (OIs) [1]. These OIs may
be rendered to cover the whole 180 × 360

◦
range on a

spherical scene surrounding the viewer, and thus provide the
viewer with a richer immersive quality-of-experience (QoE)
in a 3D environment as compared to conventional 2D images
that only occupy a restricted plane [2], [3]. Beyond the
traditional OIs that consist of a single view, it is also possible
to render the spherical scene with stereoscopic pairs of OIs
with both left and right views, creating even richer and more
realistic immersive 3D plus 360-degree viewer experiences
[4]. Nevertheless, a variety of quality issues may arise in the
creation, transmission and display processes of OIs [5]. In
order for the device manufacturers and service providers of
omnidirectional content to optimize the perceptual QoE of end
consumers, there is an urgent need of accurate and easy-to-
use omnidirectional image quality assessment (OIQA) and 3D
OIQA methods [6]–[9].
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In general, OIQA approaches are divided into two main
categories − subjective and objective quality assessment.
Subjective quality assessment is considered the most accurate
method [10]. Several subjective quality databases for OIs
have been built in recent years [11]–[13], where each OI
is associated with a perceptual visual quality (i.e., image
quality). For 3D OIs, Chen et al. [14] constructed the LIVE
3D VR database, where six distortion types and five distortion
levels were introduced to generate 450 distorted 3D OIs. The
NBU-SOID subjective quality database [15] considered three
kinds of classic compression artifacts. Head-mounted displays
(HMDs) were adopted in a single stimulus quality evaluation
setup and the 3D OIs underwent both symmetric and asym-
metric distortions. Besides image quality, depth perception is
another essential quality factor [16] that affects the overall user
experience of 3D OIs [17]. This motivated Xu et al. [18] to
create the SOLID subjective quality database, in which each
3D OI was rated by three quality dimensions − image quality,
depth perception, and overall QoE.

In practice, subjective quality evaluation is often laborious,
expensive, and inconvenient [19]. Objective quality assessment
provides an attractive alternative that not only predicts per-
ceptual quality automatically, but may also be integrated into
working VR processing systems for optimal performance. In
the literature, there have emerged a number of objective OIQA
models [20]–[22]. Most of these methods have targeted at
image quality, but none of them assesses depth perception
of 3D OIs, which is an essential quality dimension in 3D
visual QoE. In this work, we focus on designing an effective
depth quality measure of 3D OIs, and explore the impact of
depth quality assessment to the overall QoE of 3D OIs. To the
best of our knowledge, this is the first attempt to address this
challenging problem.

From the perspective of computational models, unlike IQA
that is often based on the characteristics of viewed images such
as structure, texture and content [23], depth quality assessment
(DQA) is harder to deal with, mainly because of the complex
3D vision mechanisms for the binocular human visual system
(HVS), especially in the more immersive case of 3D OIs. More
importantly, an efficient DQA model should be beneficial
to overall QoE prediction. According to the study of psy-
chophysics and neuroscience, binocular depth depends on the
ability of the HVS to precisely match corresponding feature
representations in the left and right eyes [24]–[27]. Therefore,
we employ the interocular discrepancy of left and right views.
According to the proposed multi-color-channel and adaptive
viewport selection scheme, a blind/no-reference depth quality
index (DQI) is designed for assessing the depth quality of both
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Fig. 1: An end-to-end 3D omnidirectional content processing pipeline.

single-viewport and omnidirectional stereoscopic images. In
addition to the depth quality evaluation, we further extend the
depth quality measure to the modeling of the overall QoE of
3D OIs.

The main contributions of this work are summarized as
follows:

• The interocular discrepancy is proved to be a good depth
quality indicator, which can also save computational
complexity. The adaptive viewport and region selection
approaches are proposed based on the discriminative
depth information of interocular discrepancy, for 3D OIs
and common 3D images, respectively.

• Motivated by the perceptual color peculiarity of the HVS,
we resort to using color decomposition for interocular
discrepancy maps, which is more consistent with the hu-
man perception. Based on the depth perception reflecting
global properties of input signals and frequency inde-
pendent mechanism, the interocular discrepancy statistics
of decomposed frequency subbands are extracted for the
final depth quality regression.

• We extend the proposed DQI to overall quality assess-
ment of 3D OIs, leading to depth-guided overall QoE
measure. We find that by integrating our DQI into clas-
sical IQA features, the performance of overall quality
prediction for 3D OIs can be significantly boosted, which
further demonstrates the effectiveness of our proposed
depth quality measure.

The rest of this paper is organized as: In Section II, we
provide the review of related works, including objective IQA
as well as DQA methods for both traditional and omnidirec-
tional images, and then give the motivations of our work. The
proposed depth quality measure is described in Section III.
Extensive experimental results are presented in Section IV,
and we conclude the paper in Section V.

II. RELATED WORKS AND MOTIVATIONS

In this section, the related objective quality assessment
methods are first reviewed, including 2D IQA, OIQA, 3D
IQA, 3D OIQA, and DQA models. Then, we present the
motivations of our proposed DQI and the depth-guided overall
QoE measure.

A. Related Objective Quality Assessment Models
Since humans are the ultimate receivers of most visual

signals, the goal of objective quality assessment is to predict
the human-perceived quality. Therefore, the average quality
ratings from subjective tests are usually adopted for creating
the ground-truth labels for image quality, typically in the form
of the mean opinion score (MOS) or difference mean opinion
score (DMOS). Based on the availability of original reference
images, the objective quality assessment methods generally
have three types that consist of full-reference (FR), reduced-
reference (RR), and no-reference (NR) quality assessment
which is also known as blind quality assessment. The NR
models are the most applicable and challenging approaches in
real-world, but due to the fully accessible pristine information,
FR models could deliver better performance compared with the
others [28]. The earliest PSNR calculates the signal fidelity
by pixel-to-pixel error. However, this way is inconsistent with
human perception. Thus, according to the characteristics of the
HVS, the structure similarity (SSIM) [29] and several variants
have been proposed, such as multiscale SSIM (MS-SSIM) [30]
and feature similarity (FSIM) [31], etc.

Intuitively, these 2D IQA metrics can be directly applied
to the perceptual quality assessment of OIs by performing
the computation process on equi-rectangular projection (ERP)
format [32]. But the ERP images often contain inevitable ge-
ometric deformation. To bridge the gap between conventional
2D IQA approaches and omnidirectional characterizations, the
spherical PSNR (S-PSNR) [33] was proposed to compute
PSNR by sampling points on the sphere instead of ERP
images. Besides, the weighted-to-spherically uniform PSNR
(WS-PSNR) [34] was developed according to the assigned
weights of stretching areas. Zakharchenko et al. [35] proposed
the craster parabolic projection PSNR (CPP-PSNR), aiming to
calculate the PSNR on the CPP plane.

Compared to 2D image data, a 3D image is composed
of two 2D images, i.e., left and right views, which brings
more challenges to the objective quality assessment of 3D
images. For example, if left and right views have different
types and degrees of artifacts, asymmetric distortion happens
and it is more difficult to evaluate the asymmetrically distorted
3D images [36]. It is obvious that directly averaging the
predicted quality values from left and right views cannot reveal
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(a) IQ = 3.000, DQ = 2.063, OQ = 2.375

(b) IQ = 3.188, DQ = 3.250, OQ = 3.188 

(c) IQ = 3.125, DQ = 3.938, OQ = 3.250 Depth

Fig. 2: Examples of JPEG compressed 3D OIs with left and
right ERP images. Both left and right views have the same

compression level separately (level 1 versus level 4).
Subjective ground-truth labels are provided. IQ: image

quality, DQ: depth quality, OQ: overall QoE.

the binocular mechanisms of the HVS [37], [38]. Therefore,
several 3D IQA methods that take specific 3D characteristics
into account have been proposed, e.g., the cyclopean [39]
model and weighted SSIM (W-SSIM) as well as weighted
FSIM (W-FSIM) [40]. For 3D OIQA, a multi-viewport based
quality assessment model was proposed [41]. Furthermore, the
stereoscopic omnidirectional image quality evaluator (SOIQE)
[42] was developed on the basis of predictive coding theory.

The above-mentioned 3D quality assessment methods are all
designed for estimating image quality rather than depth quality
which is of great significance in 3D images. Hence, to tackle
this problem, the depth perception difficulty index (DPDI)
was presented with a prediction model [43]. Moreover, in
[44], a depth perception quality metric (DPQM) was proposed.
Nevertheless, they are depth perception evaluation criteria for
3D images rather than 3D OIs. In other words, there is a lack
of DQA method specifically designed for 3D OIs.

B. Motivations

Typically, an end-to-end 3D omnidirectional content pro-
cessing pipeline is illustrated in Fig. 1. First, multiple view-
ports are captured by the camera array, and then stitched onto
the sphere for covering the entire field of view (FoV). Second,
for ease of encoding, transmission and storage, the 3D OIs are
projected to ERP format. Here, different coding artifacts would
be introduced in both symmetric and asymmetric manners.
Finally, after the server storage and transmission, the back
projection converting the ERP format to spherical surface
is performed and viewport rendering is used to display the
watched scene in HMD. Such process involves the unique
characteristics of 3D OIs, which should consider the perceptual
combination of 3D and omnidirectional content. Additionally,
different from ordinary 2D content, a special dimension in

3D vision is depth perception. Therefore, an effective DQA
measure for 3D OIs that jointly considers the key factors of
3D depth perception and omnidirectional properties is highly
demanded.

Fig. 2 depicts examples of three 3D OIs with left and right
ERP images. Both left and right views have the same JPEG
compression level separately. We find that the image quality
values are very similar with each other, while the depth qual-
ity values significantly increase with more depth perception.
Besides, the overall QoE is comprehensively determined by
image quality and depth quality.

Motivated by the above analyses, to fill the gaps, we propose
a perceptual depth quality measure that not only handles the
depth quality prediction of 3D OIs, but also performs well for
single-viewport, i.e., traditional 3D images. Our DQI method
adopts the interocular discrepancy statistics of local viewports
or regions in various frequency subbands with discriminative
depth perception information. Moreover, by considering the
perceptual HVS characteristics, color decomposition is used to
generate different color channels for interocular discrepancy
maps. Experiments on 3D OIQA and 3D IQA subjective
databases verify the effectiveness of the proposed DQI and
its technical components. In addition, we demonstrate that
combining our DQI with image quality features can notably
improve the performance results of overall QoE measure.

III. PROPOSED DEPTH QUALITY INDEX

Fig. 3 shows the proposed DQI and the depth-guided overall
QoE measure. First, the interocular discrepancy of left and
right views can effectively reflect depth information. Second,
we use color decomposition to generate the visual signals in
perceptual color space. Third, based on the observations of
resulted luminance and chroma information, we adaptively
extract local viewports and then decompose them into the
frequency domain. Finally, interocular discrepancy statistics
are adopted to be fed into the depth quality regressor which
can predict the depth quality. Additionally, our proposed DQI
can also be integrated with classical image quality features to
produce the overall QoE.

A. Interocular Discrepancy

With our two eyes viewing the physical world from a
slightly different visual perspective, we can feel the sense
of depth, which provides the basis of stereopsis [45]. If the
camera baseline of left and right views becomes larger, the
binocular depth level increases, and vice versa. Moreover,
based on some research works on psychophysics and neuro-
science, the capability of the HVS to match the corresponding
features in left and views determines depth perception [24]–
[27]. Thus, to reflect different depth information, we here
compute the interocular discrepancy as follows:

D = |Idl − Idr| , (1)

where Idl and Idr denote left and right view images.
We demonstrate the interocular discrepancy maps with vari-

ous depth levels in Fig. 4. As shown in this figure, the first and
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Fig. 3: Diagram of the proposed depth quality measure and the depth-guided overall QoE measure, where S represents
subtraction operation.
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Fig. 4: Interocular discrepancy maps with different depth levels. (a) Left view with medium disparity; (b) Right view with
medium disparity; (c) Interocular discrepancy map of (a) and (b); (d) Left view with large disparity; (e) Right view with

large disparity; (f) Interocular discrepancy map of (d) and (e).

second rows are two stereopairs with the same compression
type and degree. However, (a) and (b), i.e., the 3D OI in the
first row has medium disparity, while (d) and (e), i.e., the
3D OI in the second row indicates large disparity. (c) and
(f) illustrate the computed interocular discrepancy maps for
the corresponding left and right views. We can observe that
the interocular discrepancy maps with different depth levels
behave differently. Specifically, as seen from the red bounding
box, the one that has large disparity delivers more bright
regions. Based on this observation, we believe the interocular
discrepancy would be a good depth quality indicator.

B. Color Decomposition and Viewport Selection

1) Color Decomposition: Humans perceive vast spaces of
color. As significant perceptual information of the HVS, color
visual cues help the human brain to better understand the
physical world [46]. Many research works have demonstrated
the importance of both chroma and luminance on perceptual
image quality [47]–[50], but none of them explore this for
evaluating the visual quality of 3D OIs. Therefore, we attempt

to disentangle the interocular discrepancy map into luminance
and chroma components as:

D ∼ [Dl, Da, Db] , (2)

where Dl is the luminance component, Da and Db are two
chroma components. ∼ indicates the color decomposition
operator.

An example is shown in Fig. 5 (a-c). We can see that
there exist different visual appearances in these components.
Besides, most discriminative information concentrates near the
equator. Thus, we choose to extract multiple viewports from
the equator of 3D OIs.

2) Viewport Selection: As stated in the section of color
decomposition, the selected viewports from the equator of 3D
OIs are extracted. In Fig. 6, we give an example of luminance
component to show the specific viewport selection process on
the sphere and ERP plane, respectively. It should be noted
that the adaptive viewport selection process of the other two
chroma components is the same as that of the luminance
component. In this way, we not only extract multiple viewports
containing discriminative depth information, but also avoid the
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Fig. 5: Demonstration of color decomposition and viewport selection for Fig. 4 (f). (a-c) Luminance and two chroma
components in LAB color space, respectively; (d-f) The corresponding viewports extracted from (a-c).
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Fig. 6: Specific viewport selection process on the sphere and ERP plane. Here we take the luminance component of Fig. 5
(a) as an example. (a) Sampling viewports on the sphere; (b) Sampling viewports on the ERP plane.

geometric deformation problem. Suppose that we sample N
viewports, the interval between adjacent viewports is calcu-
lated by:

θ =
360◦

N
. (3)

Through the viewport selection process, we can obtain multi-
ple viewports denoted by Dln, Dan and Dbn (n = 1, 2, ..., N )
for the luminance and two chroma components, respectively.
In our experiments, we adopt N = 4 for simplification.

C. Frequency Decomposition

Based on the frequency independent mechanism in the
human brain, neurons are commonly stimulus selective [51].
Therefore, image signals are preferred to be treated in the
transform domain with different frequencies, instead of di-
rectly being used in the original form of entire image. Among
lots of transforms, the wavelet transform shows a promising
correlation with the HVS [52]. In addition, motivated by the

advantages of discrete Haar wavelet transform (DHWT) in
perceptual quality modeling [53], [54], here we choose it to
decompose the extracted viewports into subbands. Note that
since adding more decomposition levels has no significant
performance improvement, we use the single level DHWT
which can save computational complexity.

Let W be the DHWT matrix and we then can obtain the
decomposed viewports in the Haar wavelet domain. Here, we
convert luminance viewports as an example:

WDlnW
T =

[
D̃LL

ln D̃HL
ln

D̃LH
ln D̃HH

ln

]
, (4)

where the LL, HL, LH and HH represent subbands with low
or high frequency along horizontal or vertical direction. We
define the aggregation of luminance subbands after frequency
decomposition as D̃s

ln, s ∈ {LL,HL,LH,HH}. Similarly,
we can obtain the sets of two chroma subbands in the same
way as the luminance, denoted by D̃s

an and D̃s
bn.
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(a) (b) (c)

Fig. 7: The histograms of statistics for 3D OIs with the same distortion but different depth levels. (a) Luminance component
of interocular discrepancy map from 3D OI with medium depth level; (b) Luminance component of interocular discrepancy

map from 3D OI with large depth level; (c) The corresponding histograms of statistics for (a) and (b). Note that we omit the
zero disparity images since the pixels in interocular discrepancy maps of these images are almost in black.

As shown in Fig. 7, we illustrate the histograms of statistics
for 3D OIs with the same distortion but different depth levels.
Here, we take the LL subband of luminance component as
an example. From this figure, we find that the histograms of
statistics for interocular discrepancy can effectively distinguish
various depth quality degrees.

D. Statistics for Quality Regression

Extensive HVS studies have been conducted to demonstrate
that the depth perception reveals global properties of visual
stimulus [55]. Moreover, many quality assessment works
have verified the effectiveness of statistical features [56]–[58].
Based on the observations of various interocular discrepancy
maps, we exploit the representative moment (i.e., standard
deviation) and entropy intensity in our framework.

Specifically, the standard deviation of luminance subbands
is calculated by:

d
(
D̃s

ln

)
=

√
M

[(
D̃s

ln −M
(
D̃s

ln

))2
]
, (5)

where M denotes the sample mean operator. Besides, the
entropy intensity of luminance subbands can be estimated as:

e
(
D̃s

ln

)
= −

∑
i

psi

(
D̃s

ln

)
log2 p

s
i

(
D̃s

ln

)
, (6)

where psi is the probability of the image pixel equaling i in
decomposed subbands, which is computed as follows:

psi =
Ks

i

K
, (7)

where Ks
i represents the number of pixels equaling to i in

decomposed subbands and K is the total number of pixels.
After obtaining the statistics of luminance subbands, we

average them across different viewports by:

d
(
D̃s

l

)
=

1

N

N∑
n=1

d
(
D̃s

ln

)
, (8)

e
(
D̃s

l

)
=

1

N

N∑
n=1

e
(
D̃s

ln

)
, (9)

By repeating the same operations as luminance channel l
in Eq. (5-9), the statistics for two chroma components can be
achieved, which are denoted by d

(
D̃s

a

)
, e

(
D̃s

a

)
for chroma

channel a and d
(
D̃s

b

)
, e

(
D̃s

b

)
for chroma channel b. Then,

the final statistical feature for depth quality estimation is
composed by:

FDepth =
[
d
(
D̃s

l

)
, d

(
D̃s

a

)
, d

(
D̃s

b

)
,

e
(
D̃s

l

)
, e

(
D̃s

a

)
, e

(
D̃s

b

)]
,

(10)

Finally, the quality index of our proposed DQI is obtained
by the following support vector regression (SVR) [59] map-
ping:

QDepth = f (FDepth) , (11)

where f(·) indicates the SVR function.

E. Extended Overall Quality Prediction

As an effective DQA method, our proposed depth quality
measure should have the capability to assist overall QoE
assessment. Thus, by combining with existing image quality
features, we extend the proposed DQI to overall quality
prediction, namely the depth-guided overall QoE measure, as
shown in Fig. 3. In the proposed depth-guided overall QoE
measure framework, we choose the simplest PSNR and a
representative structural similarity measure (i.e., MS-SSIM)
as the image features. To be specific, the image features of
left and right local viewports are calculated as follows:

q (Vdl) = Ψ (Vol, Vdl) , (12)

q (Vdr) = Ψ (Vor, Vdr) , (13)

where Ψ denotes the local PSNR or MS-SSIM. Vol and
Vor are original local viewports, while Vdl and Vdr are the
corresponding distorted local viewports located at the same
spatial position. It should be noted that the viewport selection
is followed the same way described in Section III-B. Then, the
final feature for overall quality prediction is constituted as:



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 7

FOverall = [q (Vdl) , q (Vdr) , FDepth ] . (14)

Similarly, we can obtain the predicted overall QoE score by
the SVR function:

QOverall = f (FOverall ) . (15)

With the predicted quality scores and ground-truth subjective
ratings, we can compute their correlation as the ultimate
performance measurement.

IV. EXPERIMENTAL RESULTS

In this section, we first introduce the experimental settings
including the test databases and criteria. Then, we examine
the accuracy and validity of our proposed DQI from three
aspects: 1) test the performance of the proposed method for
3D OIQA; 2) simplify the viewport selection process and
test the proposed DQI for 3D IQA; 3) extend our proposed
depth quality measure to overall QoE prediction and verify
its performance. In addition, through the whole experiments,
different distortion types and the ablation studies of algorithm
components are also considered to further demonstrate our
proposed DQI.

A. Evaluation Protocols

In order to evaluate and compare the performance of our
method with state-of-the-arts, we conduct experiments on the
SOLID and Waterloo 3D Depth databases. An introduction of
them is shown below:

• The SOLID database [18] includes 276 distorted 3D
OIs, in which 84 images are symmetrically distorted
and 192 images are asymmetrically distorted. They are
impaired from 6 original reference images, involving
two distortion types (i.e., JPEG compression and BPG
compression) and three depth levels (i.e., zero, medium
and large disparity). All images in this database are with
the resolution of 8192× 4096 for single view and stored
in the ERP format. Each 3D OI is associated with three
labels, namely image quality, depth perception quality
and overall quality. These labels are defined as mean
opinion scores (MOSs) ranging from 1 to 5, where higher
MOSs indicate better quality. It is worth noting that this
database is the only 3D OIQA database that provides
depth quality.

• The Waterloo-IVC 3D Depth database [60] originates
from 6 pristine texture contents, i.e., Bark, Brick, Flow-
ers, Food, Grass and Water. By considering two depth
polarizations and six depth levels, 72 pristine 3D images
can be produced. They are degraded by three distortion
types containing additive white Gaussian noise, Gaussian
blur and JPEG compression. The degradation process can
totally result in 1,296 true distorted 3D images, including
either inner or outer stereopairs. The image resolution of
single view is 480× 360. Each distorted 3D image has a
depth perception difficulty index (DPDI) as the ground-
truth label. Note that higher DPDI represents lower depth
perception.

TABLE I: Performance comparison of depth quality
prediction on the SOLID database, where DQI- means using

traditional non-uniform viewport selection method.

Types Methods SROCC KROCC PLCC

2D IQA

PSNR 0.0837 0.0596 0.0980
SSIM [29] 0.1296 0.0884 0.1119

MS-SSIM [30] 0.0924 0.0656 0.0878
FSIM [31] 0.1242 0.0850 0.1207

BRISQUE [56] 0.1768 0.1247 0.1681
NIQE [63] 0.1461 0.1032 0.1408
LPSI [64] 0.1644 0.1156 0.1524
dipIQ [65] 0.0482 0.0339 0.0731

MEON [66] 0.0988 0.0671 0.1362
CNNIQA [67] 0.0436 0.0302 0.2560

TRES [68] 0.0422 0.0300 0.0730
CLIPIQA [69] 0.0375 0.0218 0.0477

2D OIQA

S-PSNR [33] 0.0753 0.0543 0.0950
WS-PSNR [34] 0.0752 0.0541 0.0921
CPP-PSNR [35] 0.0754 0.0547 0.0946
MFILGN [21] 0.0138 0.0101 0.0533

3D IQA
Cyclopean [39] 0.0513 0.0327 0.1559

Weighted SSIM [40] 0.1248 0.0854 0.1101
Weighted FSIM [40] 0.1218 0.0808 0.1214

DQA
DPQM [44] 0.5588 0.4001 0.6524

Proposed DQI- 0.9222 0.7673 0.9434
Proposed DQI 0.9299 0.7814 0.9482

For performance comparisons in our experiments, we adopt
three commonly used criteria which are Spearman rank-order
correlation coefficient (SROCC), Kendall rank-order corre-
lation coefficient (KROCC), and Pearson linear correlation
coefficient (PLCC) [61], [62]. The definitions of these criteria
are depicted as follows:

SROCC = 1−
6
∑T

t=1 k
2
t

T (T 2 − 1)
, (16)

KROCC =
2 (Pc − Pd)

T (T − 1)
, (17)

PLCC =

∑T
t=1 (gt − ḡ) (ot − ō)√∑T
t=1 (gt − ḡ)

2
(ot − ō)

2
, (18)

where T is the size of testing set, and kt represents the rank
difference between the subjective and objective scores for the
t-th image. Moreover, Pc and Pd indicate the numbers of
concordant and discordant pairs. In addition, gt and ot denote
the t-th subjective score and mapped objective score after
nonlinear regression. The mean of all gt and ot are ḡ and
ō, respectively. Among these criteria, SROCC and KROCC
reflect the prediction monotonicity, while PLCC reveals the
prediction linearity. An excellent objective quality assessment
method is expected to obtain SROCC, KROCC and PLCC
close to 1.

In the experiments, each database is randomly divided
into 80%-20% for training and testing. We perform 1,000
iteration times and the median values are regarded as the final
measurement. As recommended by the video quality experts
group (VQEG) [70], a nonlinear mapping should be used
before calculating the performance by PLCC. Specifically, we
employ a monotonic logistic regression function as:

Q′(u) = β1

(
1

2
− 1

1 + eβ2(u−β3)

)
+ β4u+ β5, (19)
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TABLE II: Performance results of the proposed DQI for
different distortion types.

Distortion Types SROCC KROCC PLCC
BPG 0.9055 0.7498 0.9241
JPEG 0.9249 0.7850 0.9666

TABLE III: Performance results of the proposed DQI for
symmetrically and asymmetrically distorted 3D OIs.

Distortions SROCC KROCC PLCC
Symmetric 0.8472 0.6982 0.9098

Asymmetric 0.8700 0.7064 0.9167

where u and Q′(u) are the raw objective quality
scores and regressed scores after the nonlinear mapping.
{βj | j = 1, 2, 3, 4, 5} denote five parameters to be fitted.

B. Performance for Depth Quality Measure of 3D OIQA

To demonstrate the effectiveness of our proposed method,
we conduct experiments on the 3D OIQA database (i.e.,
SOLID) and compare the DQI with state-of-the-art quality
assessment models: 1) classical full-reference 2D IQA ap-
proaches including the PSNR, SSIM [29], MS-SSIM [30]
and FSIM [31] as well as no-reference 2D IQA methods
consisting of BRISQUE [56], NIQE [63], LPSI [64], dipIQ
[65], MEON [66], CNNIQA [67], TRES [68], and CLIPIQA
[69]; 2) four 2D OIQA metrics, namely S-PSNR [33], WS-
PSNR [34], CPP-PSNR [35], and MFILGN [21]; 3) typical 3D
IQA algorithms containing Cyclopean [39], Weighted SSIM
[40] and Weighted FSIM [40]; 4) the DQA method called
DPQM [44], which is a depth quality measure designed for 3D
images. It should be noted that there have been no specifically
designed quality metrics for 3D OIs so far.

The performance comparison results of depth quality pre-
diction are reported in TABLE I, where the best performance
values are highlighted in bold. From this table, we can find
that traditional visual quality assessment models, including
2D IQA, 2D OIQA and 3D IQA methods, fail to evaluate
depth quality. This is reasonable because they are designed
for assessing image quality rather than depth perception. The
image quality targets the perceived quality of pictures, while
the depth quality means the ability to deliver an enhanced
sensation of depth [17].

Besides, DPQM is a depth quality metric that performs
better than those IQA models. However, only 3D images are
considered in DPQM, which is not suitable for 3D OIs. To the
best of our knowledge, our proposed method is the first one
that specifically designs for 3D OIs. The difference between
the proposed DQI- and DQI lies in the viewport selection. That
is, DQI- adopts the non-uniform viewport sampling method
as [41], [42] which results in six viewports (i.e., four on the
equator, one at the north pole and one at the south pole),
while our proposed DQI is based on the adaptive viewport
selection method described in Section III-B. It can be observed
that both DQI- and DQI significantly outperform DPQM,
demonstrating the advantages of our designed framework.
In addition, the proposed DQI is superior to DQI- because
the used viewport selection strategy in this work is more

TABLE IV: Performance evaluation of the proposed DQI for
different interocular discrepancy statistics.

Methods SROCC KROCC PLCC
Standard Deviation 0.9196 0.7646 0.9413
Entropy Intensity 0.8952 0.7324 0.9276

Proposed DQI 0.9299 0.7814 0.9482

TABLE V: Performance evaluation of the proposed DQI for
different color decomposition methods.

Methods SROCC KROCC PLCC
HSV 0.9028 0.7402 0.9296
LAB 0.9299 0.7814 0.9482

likely to reflect the discriminative information of statistical
characteristics for interocular discrepancy maps.

C. Validity of Various Distortion Scenarios

Since there exist different distortion types and symmetric
as well as asymmetric distortions are involved in the SOLID
database, we test the performance regards to various distortion
scenarios.

The performance results of our method for BPG compres-
sion and JPEG compression are shown in TABLE II. As can
be seen in the table, the proposed DQI delivers promising
performance for the two distortion types. Additionally, from
the quantitative numbers of our method for symmetrically
and asymmetrically distorted 3D OIs in TABLE III, we can
find that DQI can handle both symmetric and asymmetric
distortions. These results further verify the effectiveness of our
proposed DQI under various distortion scenarios. It should be
worth noting that the proposed model shows more superior
performance regarding asymmetric distortion. This may be
because the 3D OIs with asymmetric distortion have more
explicit differences in depth perception.

D. Validity of Different Components

Considering that our proposed DQI is composed of various
components, it is interesting to evaluate the performance for
individual component.

First, we test the results of our method about different
interocular discrepancy statistics, as illustrated in TABLE IV.
We can observe that both standard deviation and entropy in-
tensity achieve good performance. Moreover, the combination
of them shows the best results. In TABLE V and TABLE VI,
we then report the performance values of the proposed DQI
for various color decomposition methods and color channels.
The two tables show that the LAB color space and luminance
channel perform better than the HSV color space and the other
two chroma channels, respectively. This is mainly due to the
prominent role of luminance in the HVS.

E. Performance for Depth Quality Measure of 3D IQA

Except for 3D OIs, an intuitive idea is to simplify the
viewport selection process to see whether the proposed DQI
can still be able to evaluate the depth quality of traditional 3D
images or not. One choice is to use the entire interocular dis-
crepancy map, which we denote as DQI-. Here, the question is
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Depth

(a)

(b)

(c)

Fig. 8: Variation of interocular discrepancy maps with the increase of depth levels. Each row has the same distortion type
and degree, but different depth levels. (a) JPEG compression; (b) Gaussian blur; (c) Additive white Gaussian noise.

TABLE VI: Performance evaluation of the proposed DQI for
various color channels.

Channels SROCC KROCC PLCC
l 0.8871 0.7242 0.9232
a 0.8776 0.7040 0.9176
b 0.8450 0.6665 0.8912

TABLE VII: Performance comparison of depth quality
prediction on the Waterloo-IVC 3D depth database, where
DQI- means using the entire interocular discrepancy map.

Methods SROCC KROCC PLCC
PSNR 0.3600 0.2712 0.3239

SSIM [29] 0.3308 0.2474 0.3937
MS-SSIM [30] 0.4411 0.3276 0.5224

FSIM [31] 0.2925 0.2195 0.4342
DPDI [43] 0.8018 0.6190 0.7970

DPQM [44] 0.6355 0.4631 0.6445
Proposed DQI- 0.7910 0.6099 0.8025
Proposed DQI 0.8365 0.6542 0.8526

that does the whole interocular discrepancy map be necessary
for depth quality estimation?

We illustrate the variation of interocular discrepancy maps
with the increase of depth levels, as depicted in Fig. 8. We
take the image content “Bark” as an example. Note that each
row in this figure has the same distortion type and degree, but
different depth levels which increase from left to right. We
find that the discriminative information focuses on the map
center. Let X×Y be the resolution of interocular discrepancy
maps. For luminance and two chroma channels, we extract the
map center as follows:

Dl
′ = Dl

(
1

3
Y :

2

3
Y,

1

3
X :

2

3
X

)
, (20)

Da
′ = Da

(
1

3
Y :

2

3
Y,

1

3
X :

2

3
X

)
, (21)

TABLE VIII: Performance comparison of overall quality
prediction on the SOLID database, where Proposed- means
using traditional non-uniform viewport selection method.

Types Methods SROCC KROCC PLCC

2D IQA

PSNR 0.5063 0.3512 0.5458
SSIM [29] 0.7466 0.5459 0.7362

MS-SSIM [30] 0.6247 0.4447 0.6376
FSIM [31] 0.7476 0.5452 0.7468

BRISQUE [56] 0.5206 0.3685 0.5378
NIQE [63] 0.5870 0.4164 0.6023
LPSI [64] 0.6608 0.4780 0.6579
dipIQ [65] 0.5387 0.3803 0.5410

MEON [66] 0.3952 0.2737 0.4152
CNNIQA [67] 0.1523 0.0999 0.2401

TRES [68] 0.2246 0.1542 0.2587
CLIPIQA [69] 0.1399 0.0942 0.1639

2D OIQA
S-PSNR [33] 0.4754 0.3314 0.5067

WS-PSNR [34] 0.4705 0.3273 0.4996
CPP-PSNR [35] 0.4747 0.3308 0.5065
MFILGN [21] 0.1058 0.0719 0.1582

3D IQA
Cyclopean [39] 0.6317 0.4295 0.6921

Weighted SSIM [40] 0.7206 0.5204 0.7181
Weighted FSIM [40] 0.7356 0.5333 0.7384

OQA Proposed- 0.9203 0.7714 0.9271
Proposed 0.9301 0.7891 0.9359

Db
′ = Db

(
1

3
Y :

2

3
Y,

1

3
X :

2

3
X

)
. (22)

The above operation is employed to replace the viewport
selection process, resulting in the proposed DQI. We conduct
experiments on the Waterloo-IVC 3D depth database. TABLE
VII provides the performance comparison results. It can be
seen that our proposed DQI is superior to other state-of-the-
art quality assessment models, which validates the potential
advantages of our method for evaluating the depth quality of
3D images.
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TABLE IX: Ablation test results of the depth-guided overall
QoE measure.

Methods SROCC KROCC PLCC
Local PSNR 0.5176 0.3663 0.5719

Local MS-SSIM [30] 0.6144 0.4493 0.6658
Proposed DQI 0.8248 0.6497 0.8377

Local PSNR+DQI 0.9240 0.7763 0.9265
Local MS-SSIM+DQI 0.9301 0.7891 0.9359

F. Performance for Overall Quality Measure of 3D OIQA

Apart from the depth quality measure, we further extend to
a depth-guided overall QoE measure. Specifically, we integrate
the proposed DQI into existing image quality features. Here,
we adopt the well-known MS-SSIM as a representative.

In TABLE VIII, we show the performance comparison
of overall quality prediction on the SOLID database, where
OQA means overall quality assessment. The “Proposed-” and
“Proposed” denote the non-uniform viewport sampling method
and our proposed viewport selection strategy, respectively. We
can see that our extended depth-guided overall QoE mea-
sure outperforms state-of-the-art approaches, and the proposed
viewport selection method can boost the performance in a
sense.

G. Ablation Study of Overall Quality Prediction

Since two factors are considered in our depth-guided overall
quality measure (i.e., image quality and depth quality), we
conduct the ablation study of overall quality prediction by
using either image quality features or our proposed DQI.

The performance results are reported in TABLE IX, where
we use the PSNR and MS-SSIM as image features. It can be
observed that even with the simplest PSNR, the proposed DQI
can still improve the results. The important boosting effects
of our DQI demonstrate its validity for not only depth quality,
but also overall QoE.

V. CONCLUSION

In this paper, we propose a DQI method for depth quality
assessment based on interocular discrepancy statistics. The
proposed model is inspired by the perceptual mechanisms
of the HVS, where the interocular discrepancy of the left
and right views is used to reflect disparity. Motivated by the
color perception in the human brain, we divide the interocular
discrepancy into multi-color channels. The key viewports or
regions are then selected to perform frequency decomposition
and statistics computation, which are on the basis of global
depth perception and frequency independent principle in the
HVS. Extensive experiments demonstrate that the proposed
DQI offers accurate and robust evaluation of depth quality for
both 3D omnidirectional images and conventional 3D images.
Furthermore, we demonstrate that the proposed DQI can be ex-
tended to assess the overall quality by combining with existing
image quality features, leading to a depth-guided overall QoE
measure. Experimental results show that the proposed method
outperforms state-of-the-art quality assessment models. Future
work includes the incorporation of deeper visual models such
as depth polarization and the development of comprehensive

QoE assessment models jointly considering image quality,
depth quality and visual discomfort aspects.
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