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Abstract—Facial retouching, aiming at enhancing an individ-
ual’s appearance digitally, has become popular in many parts
of human life, such as personal entertainment, commercial
advertising, etc. However, excessive use of facial retouching
can affect public aesthetic values and accordingly induce issues
of mental health. There is a growing need for comprehensive
quality assessment of Retouched Face (RF) images. This paper
aims to advance this topic from both subjective and objective
studies. Firstly, we generate 2,500 RF images by retouching
250 high-quality face images from multiple attributes (i.e, eyes,
nose, mouth, and facial shape) with different photo-editing tools.
After that, we carry out a series of subjective experiments to
evaluate the quality of multi-attribute RF images from various
perspectives, and construct the Multi-Attribute Retouched Face
Database (MARFD) with multi-labels. Secondly, considering that
retouching alters the facial morphology, we introduce a multi-task
learning based No-Reference (NR) Image Quality Assessment
(IQA) method, named MTNet. Specifically, to capture high-level
semantic information associated with geometric changes, MTNet
treats the alteration degree estimation of retouching attributes
as auxiliary tasks for the main task (i.e., the overall quality
prediction). In addition, inspired by the perceptual effects of
viewing distance, MTNet utilizes a multi-scale data augmentation
strategy during network training to help the network better
understand the distortions. Experimental results on MARFD
show that our MTNet correlates well with subjective ratings and
outperforms 16 state-of-the-art NR-IQA methods.

Index Terms—Image quality assessment, subjective and objec-
tive quality assessment, multi-attribute facial retouching, multi-
task learning.

I. INTRODUCTION

FACIAL retouching is a digital beauty technology that
has been ubiquitous in personal entertainment and com-

mercial advertising. This technology can edit the face image
digitally and make changes in the spatial domain, e.g., slim-
ming of facial contours, enlarging of the eyes, correction of
the mouth, causing facial alterations similar to those achieved
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by plastic surgery [1]. Although improving attractiveness and
beauty of photos, it has also raised controversy because of
luring people into pursuing an unrealistic representation of
physical beauty, which may mislead public aesthetic values
and result in mental anxiety for body control [2]. Additionally,
inappropriate use of Retouched Face (RF) images brings a
challenge for face recognition and poses security risks in
some specific application scenarios, such as authentication,
transaction, sentiment analysis, plastic surgery planning, etc.
Recently, there have been increasing calls for legislation that
the RF images should be labeled when used due to concerns
for the general issue of truth in advertising and for public
health. In this context, quality assessment of RF images is
emerged as the times require [3].

Image quality assessment (IQA), as an essential research
topic for many image processing algorithms, can be divided
into subjective and objective methods [4]–[8]. The former
evaluates image quality using subjective experiments with
strict scoring rules. Specifically, a group of qualified observers
is recruited to rate the images. This method directly reflects
the results of human perception and provides reliable quality
scores. It has two essential roles. On the one hand, the
subjective method is usually used to generate IQA databases,
in which the rating scores can be serve as the ground truth
to validate and compare objective methods. The predictive
scores of a superior objective method have higher consistency
with the subjective rating scores. On the other hand, the
analysis of subjective behaviors can provide inspirations for
designing effective objective methods. Researchers can add
specific focuses in objective method design by analyzing the
relationship between image distortions and rating scores.

In the literature, the subjective method has been widely
adopted to investigate the perceptual quality of different types
of images, such as natural scene images [9], [10], screen
content images [11], animation images [12], etc., resulting in
many IQA databases. However, related works regarding RF
images are quite scarce. Recently, researchers have begun to
detect the presence or absence of facial retouching through a
binary classification task [13]–[15]. However, such methods
cannot inform photo editors and observers of how much an
RF image has strayed from reality. Generally, a continuous
rating can directly indicate the amount by which a person’s
appearance has been perceptually altered, helping audiences
better understand the authenticity of content when using RF
images. More recently, Kee and Farid proposed to subjectively
evaluate the alteration degree of retouched images [3] and
reported a database with 468 raw and retouched image pairs
collected from various on-line sources. Since this database was
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not specialized in facial retouching and the number of images
was small, more specific databases are required to promote the
development of quality assessment of RF images.

Existing objective works mainly focus on natural scene
images (NSIs), where distortions are usually characterized by
compression, noise, blur, contrast change, etc. To quantify the
distortions, early researches conducted extensive attempts in
mining effective handcrafted features. These attempts were
mainly from two perspectives: extracting features based on
natural scene statistics (NSS) and extracting features from
the mathematical model of human visual system (HVS). The
former is motivated by the observation that the presence
of distortions can measurably modify the regular statistical
properties of natural images [16]. Representative NSS-based
features are the local normalized intensity coefficients in
the spatial domain [17], in the DCT domain [18], etc., and
the global statistical coefficients in the spatial and transform
domains, such as intensity histogram [19], high-order statistics
[20], and entropy [21]. The latter is inspired by the fact
that features from the well-built HVS model can, to some
extent, reflect the perceptual response of how a distorted im-
age affects visual experience. Among HVS-inspired methods,
representative works mainly extracted biologically inspired
features by simulating the responses of opponent cells [22],
considering luminance masking and contrast sensitivity effects
[23], building contrast sensitivity function [24], and so on.
Although these methods have achieved remarkable success
in some simple IQA scenarios, e.g., pre-defined synthetic
distortions that are with inherent regular properties, they
usually fail in handling the IQA tasks in more complex
scenarios, e.g., those have authentic and geometric distortions
[25]. Different from NSIs, the distortions in RF images are
caused by beauty algorithms or photo-editing tools, usually
resulting in geometric modifications on key facial features,
e.g., deformation of eyes and protrusion of the nose. As such,
more advanced IQA methods are required.

Recently, deep neural networks (DNNs) have been consid-
ered as a powerful alternative to traditional handcrafted feature
based methods in complex IQA scenarios because they can
automatically extract and integrate low-level spatial distortions
and high-level semantic distortions of an input image [26].
Due to the limited labeled data, early works mainly began by
dividing the input image into multiple small patches for data
augmentation and building very shallow convolutional neural
networks (CNNs) for quality estimation [27]. Considering the
position relationships between patches and their entire image,
the adaptive weighting strategy was utilized when integrating
predictive scores from different patches [28]. Later, pre-trained
deep CNNs designed specifically for image classification were
adopted and modified from different aspects, such as fully
connected layers, global and local feature fusion, etc., to meet
the requirement of IQA [29], [30]. In order to fully train
the network, the input image was randomly cropped multiple
times, generating many large patches. To learn more dis-
criminative feature representation, the multi-task learning was
adopted by setting relevant auxiliary task, such as distortion
recognition [31], saliency detection [32], etc., for the main
task (i.e., the overall quality estimation). While praising the

achieved remarkable success, we have to notice that CNN-
based methods often possess limited ability in characterizing
global distortions because of the limited receptive field of
convolutional operations. More recently, motivated by the fact
that Transformer is able to model long-range dependencies,
increasing efforts have been made in utilizing Transformer in
a reasonable manner for accurate IQA [33]. Representative
works were reported from leveraging multi-scale representa-
tion [34] and utilizing attention-panel mechanism [35]. Some
works also incorporated the strengths of CNN and Transformer
for more accurate predictions [36], [37]. Although these DNN-
based methods have performed effectively on various con-
ventional IQA tasks, their effectiveness in handling RF data
requires further investigation.

This paper makes a comprehensive study on the quality
assessment of multi-attribute RF images. On the one hand, we
selected 250 high-quality face images and utilized four popular
photo-editing tools to retouch them automatically in various
styles, resulting in a collection of 2,500 retouched images.
Then, we carried out a series of subjective experiments to
evaluate the perceptual quality of RF images from multiple
perspectives. Based on the subjective data, we constructed
a Multi-Attribute Retouched Face Database (MARFD) with
multi-labels for RF images, and concluded the primary factors
impacting the perceptual quality. Our findings and insights
highlight the key points of quality assessment of RF and
provide inspiration for the follow-up design of objective IQA
methods. On the other hand, according to these findings, we
introduced a simple yet effective multi-task learning based
IQA method, termed MTNet, for evaluating the quality of RF
images in a no-reference (NR) manner. MTNet can objectively
measure how much an RF image has strayed from reality,
providing a certain reference for audiences. More specifically,
it utilized a classical CNN as the feature extractor and adopted
a multi-task learning strategy to simultaneously estimate the
alteration degree of facial features and perceptual quality score
of the RF image. Inspired by the perceptual effects of viewing
distance, a multi-scale training strategy is applied to help the
network better understand the distortions in RF images. The
contributions of this paper are as follows:

• We conduct a series of subjective studies to comprehen-
sively evaluate the perceptual quality of multi-attribute
RF images from diverse perspectives and construct a new
IQA database, namely MARFD1. A total of 2,500 RF
images are generated by processing 250 high-quality face
images with 4 popular photo-editing tools under different
settings. Each RF image is labeled with 5 continuous
quality scores from different perspectives, including the
overall quality and alteration degree of each attribute (i.e.,
eyes, nose, mouth, and facial shape).

• We undertake a thorough discussion of the newly con-
structed MARFD, highlighting the key points we should
notice when designing objective methods. We also eval-
uate 16 state-of-the-art NR-IQA methods on MARFD,
providing a thorough summary of the benchmarking

1This database will be available at https://github.com/hhhollyjones for
academic purposes upon the acceptance of this paper.
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results and insights into areas for improvement.
• According to the findings from subjective experiments,

we introduce a multi-task IQA network, termed MTNet.
Considering the geometric distortions of RF images,
MTNet utilizes four auxiliary tasks, i.e., alteration degree
estimation of retouching attributes, to enhance the feature
representation and improve the performance of the main
task, i.e., overall image quality prediction. Extensive
experiments demonstrate that our MTNet correlates well
with subjective ratings and is more competent for the RF
IQA task than 16 state-of-the-art NR-IQA methods.

II. RELATED WORKS

A. Image Quality Assessment Databases

In the past decades, the literature has accumulated remark-
able achievements in constructing IQA databases for different
application scenarios. Among numerous attempts, research
on NSIs receives the earliest attention [38]. For instance,
considering the distortions occurring at the stage of image
acquisition, storage, and transmission, Sheikh et al. [9] con-
structed the legend IQA database LIVE, including five types
of synthetic distortions. Similarly, Ponomarenko et al. [10]
proposed the TID2013 that consists of 3,000 distorted images
generated from 24 raw images using 25 synthetic distortions.
In view of the actual situations, database with authentically
distorted images was later reported [39]. Motivated by the
success of relevant works on NSIs, many efforts have also
been made in constructing IQA databases for other types of
images/videos, such as screen content images [11], medical
images [40], panoramic videos [41], etc. Recently, researchers
began to investigate the perceptual quality assessment issues of
images distorted by post-processing algorithms, e.g., stitching
[25], super-resolution [42], enhancement [43], and so on.

Face IQA is a fundamental yet important research area
in identity recognition system. For a long time, face IQA
mainly aims to evaluate the impact degree of a distorted face
image on the accuracy of identity recognition systems. To
propel the development of this field, many databases have
been reported recently, such as Adience [44], Cross-Quality
LFW [45], AgeDB-30 [46], and so on. However, with the
wide usage of RF images in personal entertainment and com-
mercial advertising, it is highly desired to evaluate the quality
assessment of an RF image from the perspective of digital
photo alterations. In this context, different from previous
works, the quality assessment discussed in this study refers
to the perceptual alteration degree of a face image after the
retouching operations. Recently, Kee and Farid [3] made a pi-
oneering attempt to evaluate the alteration degree of retouched
images through subjective experiments and constructed an
IQA database, which includes 468 original and retouched
images. Since each original image was only retouched once
and most images included geometric alterations on the whole
body rather than only on the facial regions, this database is
not suitable for comparing and validating quality assessment
methods for RF images.

B. Objective Image Quality Assessment Methods

Face IQA is a hot topic in recent years [47]. It involves as-
sessing factors like clarity, lighting, and absence of occlusions
or distortions that might impede accurate recognition. For
instance, supervised face IQA methods like SDD-FIQA [48],
MagFace [49], and CR-FIQA [47] have seen widespread use.
These methods, along with unsupervised techniques like SER-
FIQ [50] and FaceQAN [51], have demonstrated effectiveness
across different face recognition models and datasets. Different
from these works, the RF quality assessment discussed in
this study aims to evaluate perceptual digital alteration degree
caused by retouching operations.

For accurate image quality prediction, one of the key points
is extracting effective features for distortion representation.
Inspired by the statistical properties of natural images, Mittal
et al. [17] measured the distortion degree of an image via the
local normalized intensity coefficients in the spatial domain.
Lamichhane et al. [52] introduced a NR quality metric for
light field images via analysis of spatial and angular charac-
teristics. Apart from NSS-based works, effective IQA methods
have also been designed from the perspective of modeling
the characteristics of HVS. Given that tone-mapping usually
causes color distortions, Yue et al. [22] proposed to simulate
the responses of the brain in processing color information and
extract statistical features from the response maps to represent
the distortions in tone-mapped images. Gu et al. [53] utilized
both classical HVS-inspired features and free-energy-based
features to measure the distortions in an image and build
an IQA model by fusing these features via support vector
regression.

Benefiting from the strong capability of automatic feature
extraction and fusion, DNN-based IQA methods have attracted
increasing attention and have gradually become an expected
substitute for traditional handcrafted feature-based IQA meth-
ods. Kang et al. [27] introduced a shallow CNN that takes
the image patches as the inputs for blindly evaluating image
quality. Pan et al. [36] proposed a multi-branch network, in
which the spatial-domain features, the gradient-domain fea-
tures, and the weighting information were extracted in parallel.
The features were fused based on the weighting information
to obtain the image quality. Su et al. [29] introduced a self-
adaptive hyper network that separated the NR IQA procedure
into the stages of content understanding, perception rule
learning, and quality predicting. Given that CNNs may not be
sensitive to global distortions due to the limited receptive field
of convolutional operations, You and Korhonen [33] added the
Vision Transformer (ViT) on the top of a feature map extracted
by CNN, and the features from ViT were fused via a multi-
layer perception head to yield the image quality. Zhou et al.
[7] proposed a U-shaped Transformer network for evaluating
image quality in a NR manner. To thoroughly extract local and
global distortions, Golestaneh et al. [36] incorporated CNNs
and Transformer to extract both local and global features for
quality assessment.
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Fig. 1. Examples in our constructed MARFD: (a) raw face images, (b) retouched face images generated under different settings.

III. MULTI-ATTRIBUTE RETOUCHED FACE DATABASE

A. Image Collection and Processing

Generally, a standard IQA database should include diverse
image contents to represent real-world scenarios as much as
possible. In view of this, we collected 250 high-quality face
images2 from the FFHQ database [54]. According to practical
considerations, certain standards are followed during data
collection. Firstly, we focused on selecting images of Asians
due to the shortage of databases specifically designed for Asian
subjects in the literature. Secondly, we only chose images
with no facial obstructions, adequate lighting, and neutral
expressions, which made it easier to modify them using photo
editing softwares and ensured clear observation of any possible
retouching artifacts. Thirdly, images with rich contents and
details in facial features (e.g., mouth, nose, eyes, etc.) and
shapes, were primarily chosen, and all images maintained a
relatively balanced age and gender distribution. To facilitate
the design of subsequent objective IQA methods, all images
have the resolution of 1024×1024 with the face centered. We
treated these images as raw face images. Some examples are
shown in Fig. 1(a).

After collecting the raw images, we employed photo-editing
tools to retouch these images automatically in different styles.
Four well-known photo-editing tools were utilized in this
study: Adobe Photoshop3, MeiTu4, Luminar Neo5, and Arcsoft
Portrait+36. These tools were selected for their user-friendly
interfaces and comprehensive portrait editing functionalities
that facilitate the automatic creation of diverse and refined
facial images. Generally, geometric changes in facial structure
have a more significant impact on appearance and can seri-
ously tamper with identity information, posing challenges to
identification. In addition, considering that retouched images
with shape adjustment become increasingly popular in many
aspects of social media, e.g., Twitter, Instagram, WeChat,
we focused primarily on geometric changes in facial features
(eyes, nose, mouth) and facial shapes, rather than photometric

2All images are copyright of their rightful owners, and no copyright
infringement is intended.

3https://www.adobe.com/products/photoshop.html?promoid=RBS7NL7F
4https://mt.meipai.com/
5https://skylum.com/luminar
6https://arcsoft-portrait.software.informer.com/3.0/

changes such as skin smoothing or brightening. The detailed
settings for each photo-editing tool employed in our exper-
iment are documented in Table I. It is worth noting that,
we only considered the widely used functions of these tools
in face retouching during parameter settings. This approach
allowed us to generate a wide array of retouched images, each
varying in the degree and style of alteration, thereby providing
a comprehensive dataset for our analysis. The diversity in
retouching styles, stemming from the distinct characteristics
of each software, enriches our dataset and contributes to the
robustness of our study in assessing the quality of retouched
face images.

Based on the settings in Table I, we generated a total of
2,500 multi-attribute RF images from 250 raw face images.
Fig. 1(b) provides some examples of RF images, based on
which we have the following observations: 1) The retouching
degree is highly related to the predefined parameters of photo-
editing tools, and each tool has its own unique style for chang-
ing facial appearance. 2) The retouching effect is influenced
by the image content. Images with different contents may
have different response even processed by the same photo-
editing tool with the same settings. 3) Due to the retouching on
different attributes, both local and global geometric distortions
exist in the RF images. 4) The retouching artifacts of facial
parts are different. Overall, these observations highlight the
significant challenges associated with assessing the perceptual
quality of multi-attribute RF images. To better understand the
main factors that impact the perceptual image quality, it is
essential to undertake comprehensive subjective studies on all
generated multi-attribute RF images. Such insights can then
inform and guide the design of subsequent objective IQA
methods, which would enable more accurate assessment of
RF image quality.

B. Subjective Experiment
We recruited 23 observers (aged 20 to 30) to rate the

perceptual quality of all collected multi-attribute RF im-
ages. All observers signed the written consent form. The
subjective experiment was approved by the Medical Ethical
Committee Approval of Shenzhen University Health Science
Center (Number: PN-202400002). All observers had normal
or correct-to-normal visions and had exposure to retouching
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TABLE I
THE SETTINGS OF PHOTO-EDITING TOOLS.

Num. Photo-editing Tools Settings
1 Luminar Neo [Eyes] Iris visibility: 80, Eye magnification:

80, Eye enhancement: 20.

2 Arcsoft Portrait+3 [Nose] Nose bridge: 50;
[Mouth] Smile: 50.

3 MeiTu

[Eyes] Size: 100, Height: 80;
[Nose] Size: 70, Nostrils: 100, Nose bridge:
100;
[Mouth] Size: -80;
[Facial shape] Width: 100, Jaw: 80.

4 Adobe Photoshop

[Eyes] Size: 50 50, Eye width: 50 50, Eye
height: 50 50;
[Nose] Nose width: -50;
[Mouth] Smile: 30, Lip width: -100;
[Facial shape] Chin height: 50, Jaw: -50, Face
width: -50.

5 Adobe Photoshop

[Eyes] Size: 50 50, Eye width: 50 50, Eye
height: 50 50;
[Nose] Nose width: -200;
[Mouth] Smile: 60, Lip width: -200;
[Facial shape] Chin height: 50, Jaw: -50, Face
width: -50.

6 Luminar Neo [Eyes] Enlarge eyes: 170;
[Facial shape] Slim face: 100.

7 Adobe Photoshop

[Eyes] Size:100 100, Eye width: 100 100, Eye
height: 100 100;
[Nose] Nose width: -100;
[Mouth] Smile: 15, Lip width: -50;
[Facial shape] Chin height: 50, Jaw: -50, Face
width: -50.

8 MeiTu

[Eyes] Size: 180, Eye height: 150;
[Nose] Size: 120, Nostrils: 150, Nose bridge:
150;
[Mouth] Size: -150;
[Facial shape] Width: 100, Jaw: 80.

9 MeiTu

[Eyes] Size: 180, Eye height: 150;
[Nose] Size: 120, Nostrils: 150, Nose bridge:
150;
[Mouth] Size: -150;
[Facial shape] Width: 180, Jaw: 180, Chin
height: 100.

10 Adobe Photoshop

[Eyes] Size:100 100, Eye width: 100 100, Eye
height: 100 100;
[Nose] Nose width: -50;
[Mouth] Smile: 15, Lip width: -50;
[Facial shape] Chin height: 100, Jaw: -100,
Face width: -100.

images in daily life. According to ITU recommendations [55],
during the subjective experiment, observers were asked to
rate the quality of each RF image at a viewing distance
of three times the image height. All images were presented
on a 1920×1080 HP 27-inch screen using a designed rating
software. Before the formal rating, a training session was
prepared for all the observers. Specifically, we first introduced
the experiment’s goals and rules by PowerPoint presentations,
showcased the differences in various levels of image retouch-
ing, and demonstrated how to use the rating software, ensuring
that the observers fully understood the task requirements.
Then, the observers were asked to score 20 raw/RF image
pairs. Only qualified observers with rating accuracy over 80%
were allowed to participate in the formal rating session. The
number of final qualified observers was 20. Notably, these
training images were not included in the subsequent formal
rating stage as well as the final database.

Fig. 2 illustrates the graphical user interface of the used

rating software. Specifically, the raw face image was displayed
on the left, while two multi-attribute RF images were displayed
on the right. By comparing the difference degree between
left and right image, observers were asked to first rate the
quality of the right image separately from four attributes (eyes,
nose, mouth, facial shape), and then rate the overall quality.
Since the retouching level of each attribute was limited during
the RF image generation, the rating range here was relatively
narrow, within a range of 1∼3. However, when incorporating
the settings of all attributes, the generated RF images became
more distinct and complex. In view of this, we set the rating
range of the overall quality to 1∼5. A higher rating score
indicates a larger difference between the RF image and its raw
image. The presentation order of the images was randomized
to minimize memory effects on ratings. Once the “Next”
button was pressed, the rating software automatically recorded
the rating scores of current two RF images. It is noteworthy
that we randomly presented two RF images simultaneously to
better compare their differences and reduce the likelihood of
identical ratings. The observers were advised to take a break
every 20 minutes to relieve accumulated visual fatigue and
to ensure that their ratings remained reliable. In view of the
number of generated RF images, we set six rating sessions
for each participant on different days, and the image number
in each rating session was 410, 410, 420, 420, 420, and
420, respectively. The average number of rated images per
session was 417, and it took each participant approximately
three hours to complete a rating session. Overall, a total
of 250,000=2,500×20×5 subjective ratings were collected,
where 2,500, 20, and 5 denote the image number, observer
number, and ratings number per image, respectively.

Fig. 2. Graphical user interface designed for our subjective experiment.
This interface displays three images side-by-side for comparison: the original
reference image on the left, and two randomly retouched versions of this
original image in the middle. Participants in the study are instructed to
compare each retouched image with the original and assign attribute scores to
the retouched images. These scores reflect the degree of retouching; a higher
score indicates more alteration.

C. Mean Opinion Score Computation

Since observers may have different judgements on the same
image due to their inconsistent understanding even though
they receive the same training. Therefore, a data processing
process is required before determining the final quality score
of each RF image. First, we removed the outliers based on
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data statistics. For a given image j, its mean score µj and
standard deviation sj across all observers are calculated by

µj =
1

N

∑N

i=1
rij , (1)

sj =

√
1

N − 1

∑N

i=1
(µj − rij)2, (2)

where N denotes the number of observers who participated
in the experiment. rij is the rating score of the j-th image by
the i-th observer. The confidence interval for the j-th image
is defined as [µj −

√
20sj , µj +

√
20sj ]. If a rating score for

an image falls outside the confidence interval, it is considered
an outlier. Let Pi and Qi denote the total number of outliers
for the i-th observer, respectively. An observer is removed if
more than 5% of his/her rating scores are outliers and the ratio∣∣∣ (Pi−Qi)
(Pi+Qi)

∣∣∣ is less than 30%. As a result, none of the observers
was rejected among 20 observers. Next, the qualified rating
score rmj of each qualified observer needs to be converted to
a Z-score Zm,j by :

Zm,j =
rmj − µm

sm
, (3)

where µm and sm are the mean score and standard deviation
across all qualified rating scores of the m-th observer.

After that, a linear mapping function is used to scale the Z-
Score to the rating range, i.e., [1, 5] for the overall quality and
[1, 3] for all attributes (eyes, nose, mouth, and facial shape).
The mean opinion score (MOS) Qj for the j-th image is finally
calculated as the average value of scaled Z-score Z ′m,j :

Qj =
1

M

∑M

m=1
Z ′m,j (4)

where M is the number of qualified observers. Through the
above process, we have five MOS values for each RF image
in total.

D. Subjective Data Analysis

Fig. 3 shows the distributions of MOS values. As can be
seen, the distributions of MOS values rated from different
attributes are different. Such an observation indicates that the
attention paid on these attributes should be different when
retouching face images as well as designing objective IQA
methods. In view of this, we further investigate the order
of importance of these attributes by calculating the distance
between the MOS distributions using the Kullback-Leibler
(KL) divergence. If the two distributions are closer, the KL
divergence will be smaller, otherwise, the KL divergence will
be larger. Experimental results show that, the KL divergence is
0.0125, 0.0109, 0.0106, and 0.0049 between the MOS values
distribution of the overall quality and that of eyes, nose, mouth,
and facial shape, respectively. This demonstrates that, among
these four attributes, facial shape is the most expressive and
attractive factor affecting subjective rating, followed by the
mouth, nose, and eyes.

IV. PROPOSED METHOD

A. Motivation

In practice, retouching tools not only produce glamorous
and visually striking appearance for publishers, but also bring
great difficulty to audience to determine how much a retouched
image has strayed from reality. Excessive use of retouching
techniques can cause false information, which may deceive the
audience, such as online dating scams. This leads to a surge
in the requirement of effective quality assessment methods for
RF images. Considering that geometric retouching functions,
e.g., eye enlargement, face lifting, etc., are more easily cause
appearance change than photometric retouching functions,
e.g., smoothing and whitening, this study mainly evaluates
the perceptual quality of RF images from the perspective of
geometric alterations. For this purpose, a simple yet effective
multi-task learning based NR-IQA method is introduced.

The motivations of our method are that: 1) Since audience
cannot access the pristine counterparts of RF images in most
short-video platforms, e.g., Facebook Reels, YouTube Shorts,
and TikTok, a NR IQA method is much desired to reflect
how humans make predictions without reference to the original
faces. 2) As described previously in Section III-A, the geomet-
ric alterations of an RF image may be the result of retouching
operations on facial features, such as eyes, mouth, nose, etc.
Therefore, analyzing the alteration degree of each attribute
can help us better understand the perceptual quality of an RF
image. 3) According to the principle of multi-task learning,
the network can learn more appropriate feature representations
to obtain better performance for the main task, thanks to the
assistance of well-designed auxiliary tasks.

B. Network Architecture

Our MTNet works in a multi-task manner, where the main
and auxiliary tasks are the prediction of the overall quality
score and alteration degree estimations of four facial features
(i.e., eyes, nose, mouth, and facial shape), respectively. Fig. 4
presents the architecture of MTNet, which consists of image
feature extraction and image quality prediction.

1) Image Feature Extraction: For an RF image with the
size of H ×W × 3, we feed it into the backbone and extract
a set of features (Fi ∈ RH/2i×W/2i×Ci , i ∈ {1, 2, 3, 4}) from
the backbone. In this study, considering that the RF images
usually include both global and local semantic distortions, we
select the popular ResNet50 [56] as the backbone for feature
extraction by reserving five residual blocks and removing fully
connected layers, instead of a shallow network that takes
small image patches as the input and only consists of very
few convolution layers. This is because taking small image
patches is not conducive to the network capturing global
distortions, and the shallow network has limited ability in
extracting semantic concepts. It is worth noting that, other
mainstream CNN-based and Transformer-based networks that
take relatively large image patches or the whole image as the
input can also be applied. We leave the optimal backbone
selection as a possible future work as it is not the focus of
this study.
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(a) Eyes (b) Nose (c) Mouth (d) Facial Shape (e) Overall

Fig. 3. Distribution of MOS values in the MARFD. Each sub-figure is labeled with the name of the corresponding retouching attribute for easy comparison.

Fig. 4. Architecture of MTNet. Given an RF image, it is sent to the feature
extractor first to obtain the semantic feature F4. Then, F4 is processed by the
GAP and reshape operations. Finally, the resulting Ip is fed into the quality
regressor to estimate the alteration degree Pi (i∈{eyes, nose, mouth, facial
shape}) of four facial features (eyes, nose, mouth, facial shape) and the overall
quality score of the RF image simultaneously.

2) Image Quality Prediction: Since F4 contains the se-
mantic concepts of the input RF image, we process it with
a global average pooling (GAP) operation and reshape to
compress it in the spatial domain. After that, the resultant
feature Ip is sent to the quality regressor to predict image
quality scores from different perspectives. Specifically, the
quality regressor follows a five-branch architecture, in which
the top four branches predict the alteration degree Pi (i∈{eyes,
nose, mouth, facial shape}) of four facial features, respectively,
and the bottom branch estimates the perceptual quality score
Poverall (PO) of the RF image. All five branches have the same
structure, including two fully connected layers with the (input,
output) neural nodes of (2048, 512) and (512, 1), respectively.
After the first fully connected layer, we add a Hardswish
activation function. By setting these four auxiliary tasks, the
network is able to better extract discriminative features from
different attributes and achieve better prediction consistency
with the subjective ratings. In addition, it can help us better
understand which attributes have been modified and to what
extent they have been modified.

C. Loss Function

To optimize the network, we adopt a multi-task learning
strategy. The overall loss function for MTNet is defined as:

L = Lq(GO, PO) +
∑4

i=1
Lq(Gi, Pi), (5)

where GO is the MOS value of the overall quality, and Gi is
the MOS value of the i-the attribute (i ∈ {eyes, nose, mouth,
facial shape}) of the input RF image. In Eq. (5), the first
item is used for supervising the main task that predicts the
overall quality score of an RF image, while the second item is
used for supervising the auxiliary tasks that separately estimate
the alteration degree of all attributes. In this study, following
previous works, we choose the widely used mean square error
loss as Lq(·, ·).

D. Implementation Details

In the training stage, the backbone uses the pre-trained
weights by ImageNet and the other layers of our MTNet are
randomly initialized. The network is learnt by minimizing Eq.
(5), with a batch size of 32. A total of 60 training epochs are
carried out, utilizing the Adam optimizer. The initial learning
rate is set at 1e-4, decaying by 0.5 after every 10 epochs. All
the input RF images are resized to 512×512, and the randomly
horizontal flip is used to augment training images. To fully
capture the distortions in RF images, we scale the images in
each batch by ratios of 1, 0.75, and 1.25, and train each batch
through three separate iterations. In the inference stage, we
resize the testing RF images to 512 × 512 and pass them to
the well-trained model to get the predicted scores. Our NR-
IQA network is implemented on the PyTorch framework, and
all the experiments are conducted on a workstation equipped
with two Intel XEON 4210R CPUs and one NVIDIA RTX
3090 GPU.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

1) Train-Test Split of the Database: Following the general
practice in the IQA field, we randomly divide the constructed
MARFD into two non-overlapping subsets based on the con-
tents of the raw face images. Specifically, 2,000 RF images
from 200 out of 250 raw face images are selected as the
training subset, and the 500 RF images from the remaining
50 raw face images are chosen as the testing subset. For fair
comparisons, all IQA models are trained (tested) on the same
training (testing) subset. Also, to eliminate the performance
bias from a specific train-test split, we execute this random
train-test split procedure 10 times and report the mean value
of the results across 10 trials.
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2) Evaluation Metrics: We choose four mainstream evalu-
ation metrics in the IQA field [57] to report the quantitative
results of IQA methods, including SRCC, KRCC, PLCC,
and RMSE. Specifically, the first two metrics measure the
prediction monotonicity, while the last two metrics evaluate
the prediction accuracy. As suggested by the video quality
experts group [58], a nonlinear fitting function is used to map
objectively predicted scores to subjective rating scores before
computing PLCC and RMSE:

f(s) = κ2 +
κ1 − κ2

1 + eκ4(s−κ3)
, (6)

where s are the predictive scores computed by an objective
IQA method, and f(s) are the accordingly fitted scores. κ1 ∼
κ4 are fitting parameters that can be estimated by minimizing
the sum of squared errors between f(s) and subjective ratings.
Generally, a superior IQA method provides predictive scores
that are more consistent with subjective ratings, achieving
higher SRCC, KRCC, and PLCC values yet a lower RMSE
value.

3) Compared Methods: In this study, we compare our
introduced MTNet with 16 state-of-the-art NR-IQA methods,
including BRISQUE [17], GM-LOG [59], GWH-GLBP [60],
FRIQUEE [61], BIQME [62], BMPRI [63], MDM [64], CN-
NIQA [27], MB-CNN [28], HyperIQA [29], GraphIQA [30],
VIPNet [37], StairIQA [65], MUSIQ [34], TReS [36], and
DEIQT [35]. The first seven methods are traditional handcraft-
ed feature-based methods, while the others are DNN-based
methods. Among these DNN-based competitors, CNNIQA and
MB-CNN divide the image into small patches (with the size
of 32×32) and take them as the input, while the others take
the cropped large patches (usually with the size of 224×224
or larger) as the input. In addition, the first five DNN-based
methods utilize CNN for distortion-aware feature extraction
and fusion, the last two DNN-based methods use pure Trans-
former networks, while the middle two methods consider
both CNN and Transformer for image quality prediction. All
these methods are retrained and tested on the divided data
in Section V-A1 using the official source codes released by
authors with their default settings. For methods (VIPNet and
DEIQT) that rely on combined synthetic distortion databases
for training, we directly load the pre-trained modules (i.e.,
the DPM of VIPNet and the encoder of DEIQT) provided
by the authors and retrain them on our constructed dataset.
This is because our constructed MARFD does not include the
synthetic distortions they needed.

B. Comparison on the Whole Database

Table II shows the results of our MTNet and 16 competing
NR-IQA methods on the constructed database in terms of four
evaluation metrics. The best result of each evaluation metric
is marked in bold. From Table II, we have the following ob-
servations. First of all, conventional NR-IQA methods are not
qualified for the perceptual assessment of multi-attribute RF
images. For instance, even though BRISQUE achieves the best
performance among the six methods, it only obtains 0.241,
0.303, 0.164, and 0.940 in SRCC, PLCC, KRCC, and RMSE,
respectively. This is because these methods are specifically

designed for evaluating synthetically distorted images based on
the assumptions that features, e.g., natural scene statistics [17],
[61], local structures [59], [60], or information amount [64],
are measurably modified by the presence of distortions, so
they, perhaps not surprisingly, are inclined to mediocrity when
coping with the complex geometric distortions of RF images.
Secondly, DNN-based methods possess the superior capability
for accurately evaluating RF images and generally perform
better than conventional methods. A possible reason for this
is that DNN can automatically extract and fuse distortion-
aware features. Last but not the least, our MTNet performs
better than competing methods. For instance, our MTNet has
the increment of 0.048 in SRCC, 0.043 in PLCC, and 0.070
in KRCC, respectively, over the popular method HyperIQA.
Additionally, compared with the recently reported methods
VIPNet and DEIQT, our MTNet still has clear leading advan-
tages in accurately evaluating the quality of RF images. For
instance, it surpasses VIPNet and DEIQT by approximately
14.8%, 4.1% in SRCC, 9.9%, 3.5% in PLCC, and 18.1%,
6.1% in KRCC, respectively. As shown in Fig. 5, compared
to 9 DNN-based competing methods, the proposed MTNet
can produce scatter points that are closer to the fitted curve.
This indicates that MTNet correlates better with human visual
perception in evaluating the quality of RF images.

TABLE II
PERFORMANCE COMPARISONS ON THE CONSTRUCTED DATABASE. ↑
(↓) INDICATES THAT THE HIGHER (LOWER) VALUE IS, THE BETTER

PERFORMANCE IS.

Methods SRCC ↑ PLCC ↑ KRCC ↑ RMSE ↓

C
on

ve
nt

io
na

l
N

R
-I

Q
A

BRISQUE [17] 0.241 0.303 0.164 0.940
GM-LOG [59] 0.214 0.271 0.145 0.949
GWH-GLBP [60] 0.213 0.246 0.145 0.956
FRIQUEE [61] 0.214 0.225 0.149 0.960
BIQME [62] 0.115 0.133 0.082 0.977
MDM [64] 0.073 0.072 0.058 0.984
BMPRI [63] 0.207 0.270 0.140 0.476

D
L

-b
as

ed
N

R
-I

Q
A

CNNIQA [27] 0.266 0.295 0.182 0.940
MB-CNN [28] 0.265 0.298 0.180 0.941
HyperIQA [29] 0.880 0.903 0.699 0.423
GraphIQA [30] 0.466 0.487 0.323 0.816
VIPNet [37] 0.780 0.847 0.588 0.524
TReS [36] 0.833 0.862 0.643 0.500
StairIQA [65] 0.471 0.486 0.327 0.861
MUSIQ [34] 0.839 0.866 0.651 0.491
DEIQT [35] 0.887 0.911 0.708 0.179
MTNet (Ours) 0.928 0.946 0.769 0.318

C. Comparison on Each Photo-Editing Setting

Four popular photo-editing tools are selected and operated
under different retouching settings to generate RF images, as
shown in Table I. It is meaningful to compare the performance
of NR-IQA methods on images generated under each setting.
Table III tabulates the experimental results, in which only
SRCC and PLCC are given due to space limitations. As can
be seen, the results of each NR-IQA method vary greatly
across different retouching settings. For example, among these
NR-IQA methods, the achieved best SRCC values are 0.463
and 0.768 in Setting 2 and Setting 8, respectively, across all
10 settings. Most competing methods produce unsatisfactory
performance (with SRCC lower than 0.15 and PLCC lower
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Fig. 5. Scatter plots of the performance of 9 DNN-based NR-IQA methods and our proposed MTNet on the constructed database.

than 0.2) in most settings. TReS performs best in Setting 9,
obtaining the SRCC and PLCC values of 0.702 and 0.722.
Despite this, our MTNet exhibits stable leading advantages and
performs the best in 9 out of 10 settings. More specifically, it
achieves the best 18 times and the second best 2 times in a
total of 20 comparisons. In contrast, the second-best method
TReS only performs the best 2 times and the second best 8
times. This indicates that our MTNet is a more suitable for
assisting the audience in estimating the alteration degree of an
RF image than competing NR-IQA methods. According to the
descriptions in Table I, four photo-editing tools are used for
generating RF images. Here, we also report the results on each
photo-editing tool. As shown in Table IV, our proposed MTNet
also shows superior performance than competing methods.

TABLE IV
QUANTITATIVE RESULTS ON EACH INDIVIDUAL PHOTO-EDITING TOOL. ↑
INDICATES THAT THE HIGHER VALUE IS, THE BETTER PERFORMANCE IS.

WE MARK THE BEST RESULT OF EACH EVALUATION METRIC IN
BOLDFACE FOR CONVENIENT COMPARISONS.

Methods Luminar Neo Arcsoft Portrait+3 MeiTu Adobe Photoshop
SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

BRISQUE [17] 0.295 0.289 0.100 0.123 0.113 0.128 0.070 0.062
GM-LOG [59] 0.239 0.205 0.106 0.087 0.139 0.134 0.064 0.060
GWH-GLBP [60] 0.222 0.202 0.048 0.070 0.145 0.145 0.091 0.084
FRIQUEE [61] 0.213 0.227 0.067 0.094 0.109 0.126 0.053 0.064
BIQME [62] 0.156 0.154 0.126 0.118 0.126 0.106 0.097 0.075
MDM [64] 0.071 0.075 0.088 0.097 0.050 0.055 0.079 0.078
BMPRI [63] 0.184 0.188 0.074 0.077 0.108 0.100 0.059 0.060

CNNIQA [27] 0.315 0.342 0.108 0.260 0.212 0.255 0.081 0.167
MB-CNN [28] 0.303 0.334 0.151 0.258 0.220 0.244 0.073 0.125
HyperIQA [29] 0.796 0.799 0.153 0.185 0.834 0.823 0.672 0.684
GraphIQA [30] 0.359 0.390 0.086 0.237 0.362 0.379 0.129 0.170
VIPNet [37] 0.796 0.841 0.112 0.224 0.733 0.732 0.283 0.307
TReS [36] 0.792 0.788 0.275 0.358 0.797 0.799 0.557 0.588
StairIQA [65] 0.448 0.450 0.112 0.296 0.471 0.479 0.247 0.274
MUSIQ [34] 0.474 0.516 0.155 0.303 0.404 0.458 0.291 0.371
DEIQT [35] 0.819 0.826 0.318 0.377 0.841 0.845 0.680 0.705
MTNet (Ours) 0.882 0.906 0.463 0.530 0.898 0.904 0.798 0.822

D. Computational Complexity

In this section, we carry out more experiments to compare
our method with DNN-based methods in terms of computa-
tional complexity. The floating-point operations per second
(FLOPs) and the total number of parameters (Params) are
selected as evaluation metrics. Table V presents the compari-
son results, in which we can find that our MTNet does not

show significant advantages in terms of these two metrics
and ranks in the middle position among competing DNN-
based methods. Despite this, our proposed MTNet achieves
better consistency with subjective rating scores than competing
methods, as shown in Table II, Table III, and Fig. 5. It is worth
noting that our current focus is to propose a high-accuracy IQA
model for RF images. In the future, we plan to improve our
model to further enhance its efficiency, potentially reducing
its computational load without compromising performance.
This could involve exploring more advanced network pruning
techniques or more efficient architectures.

TABLE V
THE COMPLEXITY OF THE DNN-BASED NR-IQA

ALGORITHMS.

Methods FLOPs Params
CNNIQA [27] 2.377M 724.901K
MB-CNN [28] 168.810G 66.201M
HyperIQA [29] 4.335G 27.375M
GraphIQA [30] 4.154G 45.752M
VIPNet [37] 19.105G 47.191M
TReS [36] 8.387G 34.457M
StairIQA [65] 5.110G 31.799M
MUSIQ [34] 126.521G 125.563M
DEIQT [35] 4.256G 22.774M
MTNet (Ours) 21.591G 28.756M

E. Ablation Studies

In our introduced MTNet, we propose two feasible strategies
for accurate image quality prediction, i.e., using the multi-
task learning (MTL) and applying the multi-scale training
(MST). The MTL is used to learn more discriminative feature
representations through four auxiliary tasks, and the MTL
aims to help the network better understand the distortions
inspired by the perceptual effects of viewing distance on
quality assessment. Here, we further conduct several ablation
studies to investigate the contribution of MTL and MST. All
experiments are conducted with the same experimental settings
as the main experiment, as introduced in Section V-A1.

1) Effectiveness of MTL: To validate the effectiveness of
MTL, we learn a variant IQA model by abandoning the MTL
strategy from the standard MTNet. Specifically, we directly
remove the top four branches and only retain the last branch
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TABLE III
QUANTITATIVE RESULTS ON EACH PHOTO-EDITING SETTING. ↑ INDICATES THAT THE HIGHER VALUE IS, THE BETTER PERFORMANCE IS. WE MARK THE

BEST RESULT OF EACH EVALUATION METRIC IN BOLDFACE FOR CONVENIENT COMPARISONS.

Methods Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Setting 6 Setting 7 Setting 8 Setting 9 Setting 10
SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

BRISQUE [17] 0.143 0.106 0.123 0.100 0.111 0.122 0.113 0.121 0.102 0.101 0.167 0.147 0.080 0.111 0.122 0.144 0.123 0.128 0.075 0.074
GM-LOG [59] 0.084 0.072 0.087 0.106 0.067 0.087 0.137 0.153 0.108 0.129 0.153 0.127 0.130 0.136 0.105 0.073 0.106 0.082 0.137 0.128
GWH-GLBP [60] 0.117 0.087 0.070 0.048 0.145 0.149 0.107 0.143 0.099 0.150 0.107 0.133 0.082 0.126 0.113 0.101 0.115 0.112 0.105 0.125
FRIQUEE [61] 0.090 0.085 0.094 0.067 0.100 0.078 0.117 0.098 0.101 0.091 0.157 0.164 0.099 0.059 0.090 0.078 0.076 0.089 0.083 0.077
BIQME [62] 0.117 0.131 0.118 0.126 0.146 0.100 0.125 0.149 0.157 0.159 0.158 0.161 0.114 0.101 0.134 0.170 0.164 0.205 0.109 0.148
MDM [64] 0.129 0.141 0.097 0.088 0.139 0.145 0.113 0.108 0.128 0.141 0.144 0.150 0.155 0.156 0.083 0.094 0.149 0.133 0.161 0.151
BMPRI [63] 0.155 0.115 0.077 0.074 0.140 0.117 0.121 0.123 0.154 0.173 0.102 0.116 0.157 0.167 0.143 0.114 0.147 0.117 0.138 0.139

CNNIQA [27] 0.107 0.224 0.108 0.260 0.108 0.204 0.101 0.209 0.096 0.236 0.170 0.238 0.126 0.263 0.150 0.226 0.178 0.283 0.114 0.253
MB-CNN [28] 0.145 0.249 0.150 0.256 0.132 0.255 0.061 0.149 0.099 0.196 0.157 0.236 0.078 0.187 0.223 0.260 0.223 0.269 0.100 0.238
HyperIQA [29] 0.470 0.464 0.166 0.217 0.509 0.492 0.343 0.329 0.433 0.428 0.634 0.630 0.505 0.487 0.700 0.701 0.668 0.676 0.498 0.465
GraphIQA [30] 0.081 0.230 0.096 0.258 0.120 0.260 0.105 0.251 0.085 0.243 0.167 0.279 0.117 0.247 0.232 0.322 0.228 0.297 0.155 0.275
VIPNet [37] 0.241 0.344 0.098 0.241 0.241 0.341 0.139 0.200 0.187 0.302 0.403 0.446 0.234 0.300 0.398 0.459 0.467 0.498 0.188 0.311
TReS [36] 0.543 0.582 0.295 0.357 0.553 0.584 0.349 0.368 0.316 0.376 0.718 0.732 0.531 0.535 0.710 0.736 0.702 0.722 0.440 0.468
StairIQA [65] 0.315 0.343 0.112 0.296 0.291 0.341 0.172 0.281 0.147 0.285 0.499 0.524 0.273 0.387 0.493 0.519 0.443 0.484 0.177 0.286
MUSIQ [34] 0.474 0.516 0.155 0.303 0.404 0.458 0.291 0.371 0.400 0.497 0.604 0.647 0.442 0.528 0.579 0.622 0.563 0.599 0.381 0.472
DEIQT [35] 0.525 0.539 0.275 0.310 0.550 0.563 0.377 0.404 0.406 0.438 0.664 0.683 0.532 0.516 0.723 0.743 0.682 0.704 0.482 0.479
MTNet (Ours) 0.561 0.599 0.463 0.530 0.633 0.650 0.533 0.635 0.534 0.579 0.729 0.753 0.621 0.651 0.762 0.784 0.683 0.718 0.548 0.597

of the regressor in MTNet. As shown in Table VI, there
are obvious performance decrements if we abandon the MTL
strategy. For example, compared with the standard MTNet,
the network without MTL shows a decrement of 2.2%, 2.0%,
and 3.3% in terms of SRCC, PLCC, and KRCC, respectively.
This indicates that the used MTL strategy plays a positive
role in obtaining good performance. In addition, we further
investigate the performance of our method in evaluating the
quality score of each attribute. As shown in Fig. 6, our MTNet
is able to understand the alteration degree of each attribute
well and achieves good predictions, with PLCC, SRCC, and
KRCC greater than 0.92, 0.87, and 0.68, respectively. More
specifically, our proposed MTNet has better predictions, with
higher SRCC, PLCC, KRCC values, when evaluating the
alteration degree from nose than other three attributes, i.e.,
mouth, eyes, and facial shape. The performance difference
motivates us to add different weights for different tasks in Eq.
(5) for further overall performance improvement in the future.
How to select the optimal weights is our future direction.

Fig. 6. Results of quality prediction of each attribute.

2) Effectiveness of MST: In this study, to help the network
better understand the distortions, we scale each image into
three ratios, i.e., 1.25, 1, and 0.75, and take them as the
inputs of the network. To validate the effectiveness of such an
operation, we learn a variant IQA model by only retaining the
scaling ratio of 1. Through the comparisons between results
in the last two rows of Table VI, we can see that MTNet has a

decrement of 0.9%, 1.0%, and 1.6% in terms of SRCC, PLCC,
and KRCC, respectively, if we do not use the MST strategy.
Overall, both MTL and MST strategies play a positive role in
accurately evaluating the quality of multi-attribute RF images.

TABLE VI
ABLATION ANALYSIS OF MULTI-TASK LEARNING (MTL) AND

MULTI-SCALE TRAINING (MST). THE SYMBOL “×” (“X”)
DENOTES THE COMPONENT IN THE COLUMN IS EXCLUDED

(INCLUDED) IN THE STANDARD MTNET.

Baseline MTL MST SRCC ↑ PLCC ↑ KRCC ↑ RMSE ↓
X × × 0.882 0.900 0.702 0.429
X × X 0.906 0.926 0.736 0.372
X X × 0.919 0.936 0.753 0.347
X X X 0.928 0.946 0.769 0.318

3) Impact of Backbone: We further investigate the impact
of the selected backbone. Table VII presents the performance
of various network architectures used as the backbone. Here,
“Single Task” denotes using the proposed MTNet without em-
ploying MTL and MST strategies, and “Multi-Task” denotes
using the standard MTNet. As seen, the backbone, related
to the feature representation capability, directly affects the
prediction performance. Among the selected six backbones,
i.e., ResNet18 [56], ResNet50 [56], ResNet101 [56], AlexNet
[66], MobileNetV2 [67], and DenseNet121 [68], ResNet50
performs the best in case of “Single Task” and the second
best in case of “Multi-Task”, respectively. Moreover, ResNet50
also achieves the best results when averaging the results of
two cases. Therefore, we choose ResNet50 as the backbone
of our MTNet. It is worth noting that other popular network
architectures can also be selected as the backbone of our
method and the focus of current study is to design an effective
quality assessment model for RF images. We leave the optimal
backbone selection as a future work.

VI. DISCUSSIONS

Nowadays, owing to the usage of photo retouching tool-
s, advertisements and short-video platforms routinely depict
impossibly beautiful facial appearance to attract audience
attention. The reasonable usage of such tools, to some ex-
tent, can increase audiences’ shopping enthusiasm and online
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TABLE VII
ABLATION ANALYSIS OF BACKBONE.

Methods Single Task Multi-Task Average
SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

ResNet18 [56] 0.849 0.872 0.924 0.940 0.887 0.906
ResNet50 [56] 0.882 0.900 0.928 0.946 0.905 0.923
ResNet101 [56] 0.876 0.895 0.930 0.945 0.903 0.920
AlexNet [66] 0.798 0.824 0.847 0.870 0.823 0.847
MobilenetV2 [67] 0.785 0.814 0.901 0.921 0.843 0.868
Densenet121 [68] 0.856 0.879 0.930 0.947 0.893 0.913

activity, improving life quality. However, as a negative effect,
excessively using photo retouching techniques not only brings
tough challenges to face recognition for important scenarios,
e.g., online identity authentication, but also provides incorrect
inducement information that may cause audiences’ mental
anxiety about body control and that may lead to online dating
scams. In this context, reliable evaluation algorithms for RF
images are highly required. An algorithm that simply labels an
image as digitally altered or not would have limited efficacy
because it cannot explicitly tell us how much an RF image
has strayed from reality [13]. In contrast, the algorithm that
can provide a continuous rating score for the RF image is
more desired to protect the interests of audiences. However,
this topic has been largely overlooked in the past.

In this study, we advance this topic from both subjective and
objective studies. Specifically, considering that there are very
few IQA databases in this field, a multi-attribute retouched
face image database, named MARFD, is first constructed
through strict subjective experiments. MARFD consists of
2,500 RF images and associated continuous quality scores.
The RF images are the results of 4 popular photo-editing tools
on 250 face images under different settings. Unlike existing
databases that only include the raw and retouched image pairs
for binary retouching detection [15] or consider the whole
body retouching images from the online sources [3], MARFD
focuses on RF images generated by several popular photo-
editing tools and provides continuous rating scores for each RF
image from different perspectives. With these scores, it helps
us better understand which attributes have been modified and
to what extent they have been modified. We evaluate 16 state-
of-the-art NR-IQA methods to investigate their effectiveness
on multi-attribute RF data and their responses to the generated
images of different photo-editing tools. The experimental
results arouse our thinking as follows.

DNN-based methods are the better choice for RF image
quality estimation than handcrafted feature-based methods.
The reasons are from two aspects. On the one hand, geometric
distortions from retouching operations are quite complex, and
it is very challenging to mine effective and robust handcrafted
features to measure such distortions. On the other hand,
DNN-based methods can automatically extract and integrate
distortion-aware features, thanks to the data-driven property
of deep learning (DL). For better performance, efforts paid in
feature representation, e.g., multi-task learning [28], content
understanding [29], backbone modification [36], multi-scale
inputs [34], etc., are the key points of designing such meth-
ods. Although very popular, their acceptance in the practical
context is often limited by the fact that data-driven methods
lack interpretability. Considering the subjective rating scores

from multi-attributes, we introduce a multi-task learning based
method for evaluating the quality of RF images. The arrange-
ment of four auxiliary tasks helps us better understand the
distortion information of an RF image and achieves accurate
quality prediction. Nevertheless, the interpretability from the
network itself is still missing. As an exciting signal, the recent
advances in the field of explainable DL have the prospect
to remedy the deficiency of current works by allowing the
audiences to align more image processing knowledge with
indicative features for accurate image quality estimation.

Since the literature lacks large-scale IQA databases, data
augmentation is the prior concern of designing effective DNN-
based IQA methods. Existing DNN-based methods can be
broadly divided into two categories, i.e., cutting-based method-
s and cropping-based methods, based on the way of generating
network inputs. The former divides the image evenly into
equally small patches (with the size of 32×32), while the latter
randomly crops the image many times to obtain large patches
(usually with the size of 224×224 or larger). Although these
two categories of methods have been validated effectively in
some synthetically distorted NSI databases, their effectiveness
on RF data is different. According to the results in Section
V-B, cutting-based methods (i.e., CNNIQA and MB-CNN) are
generally inferior to cropping-based methods (i.e., HyperIQA,
GraphIQA, VIPNet, MUSIQ, StairIQA, TReS, and DEIQT).
The reasons for this can be attributed to two aspects. First,
dividing images into small patches splits the connectivity
between different regions of the image, making the net-
work cannot understand the global semantic concepts. Note
that, multi-attribute retouching mainly changes the geometric
features of face and brings both local and global semantic
distortions. Second, to train the network, the obtained patches
are labeled with the same quality score as the whole image.
Such an operation brings label noise to the network, which
is adverse to effective model generation. Compared to small
patches, the large patches have relatively smaller label noise.
As a consequence, cropping-based methods have generally
better results than cutting-based methods. To avoid such a
problem, the proper use of original-sized image is highly
recommended.

With the above observations, we introduce a simple yet
effective NR-IQA method, named MTNet, for multi-attribute
RF images. Our MTNet benefits from two strategies, i.e.,
the multi-task learning strategy and the multi-scale training
strategy. Different from existing works that take the distortion
recognition as the auxiliary task [31], our MTNet takes the
alteration degree estimation of four facial attributes as aux-
iliary tasks. The use of such auxiliary tasks in our method
has two important roles. On the one hand, as shown by the
results of ablation studies in Table VI, it helps improve the
performance of the main task, i.e., overall quality prediction,
through multi-task learning. On the other hand, it helps users
better understand which attributes have been modified and to
what extent they have been modified. In addition, contrary
to existing works that divide or crop images for data aug-
mentation, we utilize the multi-scale training strategy to fully
capture the distortion characteristics of RF images. Results of
ablation studies in Table VI demonstrate the effectiveness of
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these two strategies. We also investigate the performance of
these considered methods on evaluating RF images generated
by each photo-editing tool. Experimental results show that
no NR-IQA method can always achieve the best results in
handling the image generated by all retouching settings. This
indicates that, for always reliably evaluating the quality of RF
images, we need to implement a set of algorithms. Moreover,
as shown in Table III, our MTNet achieves better performance
in evaluating RF generated under most settings than competing
methods. This demonstrates that it can be a more ideal choice
than others if only one algorithm can be deployed owing to
the limited source.

Different from existing face retouch detection methods that
only detect whether the retouching effect exists or not [69],
our method, i.e., MTNet, can provide a score of how much an
RF image has strayed from reality. This merit makes it have
broader application prospects. Here, we further investigate its
effectiveness in the binary-classification face retouch detection
task and compare it with existing face retouch detection
methods. For this purpose, we conduct some experiments on
our constructed MARFD dataset and one public dataset (Face-
Forensics++ [70]). Since MARFD is originally constructed for
the regression task, we make some modifications on it for the
binary-classification task. In real-world applications, e.g., face
image sharing in social networks, slight retouching is preferred
to increase personal attractiveness, while excessive retouching
should be avoided to reduce difficulties for authentication.
In view of this, we divide the RF images into two groups.
Specifically, we set a threshold to 3 and mark the RF image
as real (if its subjective rating score is below the threshold)
or as fake (if its subjective rating score is over or equal to the
threshold). For the label conversion of other four attributes, a
similar approach is taken using a threshold of 2. The reason
why we set the thresholds at 3 and 2 is that the rating range
of the overall quality is [1, 5] and the rating range of each
attribute is [1, 3]. Taking the median as the threshold can help
us fairly partition the data into slight retouching groups and
excessive retouching groups. After that, the MARFD dataset
is randomly split in an 80/20 ratio for training/testing without
content duplication. To conduct the detection experiment task
on MARFD, we transform the original five regression heads
of MTNet into five classification heads and replace the mean
square error loss with the Cross Entropy loss. FaceForensics++
contains 5,000 videos, including 1,000 original and 4,000 fake
videos created using four deepfake technologies. To reduce
time costs, we randomly extract 36 or 9 frames from each
real/fake video for analysis. The dataset is also randomly
divided into training and testing subsets according to the video
ID, and the split ratio is 4:1. The real instances are labelled
to 1 while the others are labelled to 0. To carry out the
detection experiment on FaceForensics++, we slightly modify
our MTNet by removing the prediction branches for the four
attributes and only preserving the prediction branch for the
overall quality. In addition, we replace the regression head with
the classification head and use the Cross Entropy loss during
network training. Four face retouch detection methods are
selected for comparisons, including Scattering ResNet [71],
XceptionNet [72], Two-Stream Net [73], and CADDM [74].

All these methods are implemented using their default settings.
Table VIII tabulates the results. As seen, our proposed MTNet
is also competent for the binary-classification face retouch
detection task, with superior performance over four competing
methods.

TABLE VIII
ACCURACY COMPARISON ON FAKEFACE DETECTION TASKS

Methods MARFD FaceForensics++ [70]
Scattering ResNet [71] 0.568 0.681
XceptionNet [72] 0.890 0.800
Two-Stream Net [73] 0.886 0.762
CADDM [74] 0.914 0.745
MTNet (Ours) 0.918 0.885

Our study dovetails with current discourse in digital media,
noticing the important effects of facial retouching within
public and private spheres, from social media to professional
settings. An effective RF IQA method plays a crucial role
in various sectors including personal use and entertainment,
legal and government document processing, as well as in
the social media and advertising industries. In the personal
realm, it aids users in selecting more authentic photos for
life documentation; in legal and government documentation, it
ensures the authenticity of official documents; and in the realm
of social media and advertising, it contributes to maintaining
the genuineness of content and prevents the misleading of
consumers.

VII. CONCLUSION

This paper conducts an in-depth research on perceptual
quality assessment of RF images. Firstly, considering that
there are very few IQA databases in this field, we generate
2,500 multi-attribute RF images using 4 photo-editing tools
under different settings and construct a new IQA database
by conducting subjective studies. The constructed database
MARFD provides a reliable platform to validate and compare
the effectiveness of objective IQA methods. Secondly, we
introduce a simple yet effective multi-task learning based NR-
IQA method, named MTNet. A multi-scale training strategy is
applied to help the network better understand the retouching
distortions. Extensive experiments on MARFD show that
our MTNet is qualified for the RF IQA task, with superior
performance than 16 state-of-the-art NR-IQA methods. Results
of ablation studies also demonstrate the effectiveness of the
multi-task learning and multi-scale training strategies. Never-
theless, there is still much room for improvement, especially
on tests of each photo-editing setting. The release of the newly
constructed database and benchmarking results are expected to
pave the way for proposing specific IQA methods for multi-
attribute RF images, and the design concept of MTNet can
provide a reference for the follow-up research.
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