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Boundary Refinement Network for Colorectal Polyp
Segmentation in Colonoscopy Images

Guanghui Yue, Member, IEEE, Yuanyan Li, Wenchao Jiang, Wei Zhou, and Tianwei Zhou

Abstract—Precise polyp segmentation is vitally essential for
detection and diagnosis of early colorectal cancer. Recent ad-
vances in artificial intelligence have brought infinite possibilities
for this task. However, polyps usually vary greatly in shape and
size and contain ambiguous boundary, bringing tough challenges
to precise segmentation. In this letter, we introduce a novel
Boundary Refinement Network (BRNet) for polyp segmentation.
To be specific, we first introduce a boundary generation module
(BGM) to generate boundary map by fusing both low-level spatial
details and high-level concepts. Then, we utilize the boundary-
guided refinement module to refine the polyp-aware features at
each layer with the help of boundary cues from the BGM and the
prediction from the adjacent high layer. Through top-down deep
supervision, our BRNet can localize the polyp regions accurately
with clear boundary. Extensive experiments are carried out on
five datasets, and the results indicate the effectiveness of our
BRNet over seven recently reported methods.

Index Terms—Deep neural network, polyp segmentation,
boundary refinement, colonoscopy image.

I. INTRODUCTION

COLORECTAL cancer (CRC) is a severe disease [1] that
originates from abnormal tissue hyperplasia in the colon,

gradually evolving from polyps. Early detection and removal
of polyps helps to prevent the development of CRC [2].
Segmentation algorithms that are conducive to lesion detection
and localization, is of great importance for clinics, attracting
increasing attention in recent years [3]–[6].

Given that the polyp and non-polyp regions usually differ
in appearances, traditional methods primarily detect polyps via
analysis of the structural, textural, and color characteristics us-
ing hand-crafted features [7], [8]. Due to the limited represen-
tation abilities of hand-crafted features, such methods usually
result in missed and false detection, especially when coping
with challenging cases. Generally, precise polyp segmentation
in colonoscopy images faces two main challenges: 1) Polyps
with diverse shapes and sizes are easily overlooked. 2) It
is difficult to distinguish polyps with ambiguous boundaries
against normal tissue background.
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Recently, advances in convolutional neural networks (C-
NNs) have enabled many CNN-based methods for medical
image segmentation. Representative works are U-Net [9] and
its variants, such as U-Net++ [10], CENet [11], and HF-
UNet [12]. Inspired by the success of U-Net families, many
specific polyp segmentation methods based on U-Net have
been proposed. Patel et al. [13] enhanced the polyp representa-
tion capability using a semantic feature enhancement module
and introduced an adaptive global context module to help
the network focus on hard fine-grained features. Likewise,
Mahmud et al. [14] embedded several sequential depth dilated
inception blocks in the encoder and updated the traditional skip
connection with a newly designed deep fusion skip module.
Wu et al. [15] applied a well-designed multi-scale transformer
attention mechanism to the U-shape structure, obtaining an
impressive performance on the polyp segmentation task with
a proper balance between inference speed and accuracy.

Despite achieving great progress, most methods mainly
focus on the polyp region while ignoring important boundary
information. To address this limitation, some recent works
have focused on improving boundary representation. One
simple idea is adaptively mining boundary cues using a well-
designed module, e.g., the reverse module [16], the boundary-
aware attention module [17], and the uncertainty exploration
module [18]. Another way is taking boundary prediction as an
auxiliary task of polyp segmentation. To generate the boundary
information, specific module is introduced by analyzing the
features of the first layer [19], fusing the features of the first
two layers [20], fusing the features of the last three layers
[21], and fusing the features of all layers [22]. Additionally,
boundary-aware data augmentation strategy is also used [23].
Although most methods have been validated effective, they
usually produce poor results when handling polyps with com-
plex shapes, diverse sizes, and blurred boundary. Some meth-
ods have unsatisfactory inference speeds due to the complex
network structure. Moreover, how to effectively incorporate
the extracted boundary cues with the network for further
performance improvement remains an open question.

This letter proposes a novel Boundary Refinement Net-
work (BRNet) for precise polyp segmentation. Specifically,
a boundary generation module (BGM) is utilized to generate
the boundary map by fusing multi-level features. Additionally,
a boundary-guided refinement module (BRM) is introduced
to refine the polyp-aware features at each layer under the
guidance of the extracted boundary map from BGM and the
segmentation result from the adjacent high layer. Experimental
results indicate that our BRNet works well on the polyp
segmentation task and obtains superior performance over seven
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recent methods on five datasets. The contributions of this
study are three-fold: 1) Considering the blurred boundary of
polyps, we propose a simple yet effective network by leverag-
ing boundary-aware information for precise segmentation; 2)
Considering the diversity of polyp size and shape, we propose
a BGM to fuse multi-level features for capturing the boundary
cues; 3) We propose a new module for refining the polyp-
aware features at each layer.

II. METHODS

A. Overview of Architecture
Fig. 1 illustrates the framework of BRNet, which is similar

to the classical encoder-decoder based U-Net. BRNet takes
PVTv2-B2 [24] as the backbone and incorporates it with two
key components, i.e., BGM and BRM. To be specific, an image
is first fed into the backbone to obtain multi-level features Fi
(i = 1, 2, 3, 4). Then, F2, F3 and F4 are fused to produce
a coarse map S5, which serves as one of the guidance maps
of BRM. During feature fusion, all these three features are
first processed by a 1×1 convolution operation and two 3×3
convolution operations to adjust their channel size to 32. After
that, the resultant features are fed into the aggregation module
introduced by PraNet [16] to output S5. The reason why we do
not consider F1 is that the first layer usually consumes more
computational resources due to the larger spatial resolutions
than other layers, but contributes less to performance [25].
Additionally, F2, F3 and F4 are also fed into BGM to generate
a boundary map, which serves as another guidance map for
BRM. Then, the two guidance maps help to refine polyp-
aware information in BRM. Finally, we can obtain three more
segmentation maps Si (i = 2, 3, 4) with different resolutions
from three BRMs, and take S2 as the final segmentation result.

Fig. 1. Framework of the proposed boundary refinement network.

B. Boundary Generation Module (BGM)
Accurate boundary extraction is crucial for the segmentation

task. Generally, low-level features contain rich local boundary
details, but lack global contextual information. In contrast,
high-level features characterize overall image semantics, but
have less discrimination of local boundary details. In view of
these, we propose a BGM that combines both low-level and
high-level features to generate precise boundaries.

As illustrated in the left part of Fig. 2, F2, F3 and F4 first
perform feature adjustments using a 1×1 convolution opera-
tion Con1(·). After that, the resultant features are processed

by an up-sampling operation (if needed) to resize their spatial
sizes to that of F2 for convenient concatenation:

F
′

2 = Con1(F2),

F
′

3 = (Con1(F3)) ↑2,

F
′

4 = (Con1(F4)) ↑4 .

(1)

where ↑2 and ↑4 denote the up-sampling operation with the
up-sampling rate of 2 and 4, respectively. Then, the resultant
features F

′

2, F
′

3, and F
′

4 are concatenated along the channel
direction and the concatenated feature is further processed by
a 1×1 convolution operation, resulting in a fused feature F :

F = Con1( c©(F
′

2, F
′

3, F
′

4)) (2)

where c©(·, ·, ·) is the concatenation operation. Finally, we
feed F into a convolutional block (denoted as CB) to get
the boundary map Sb. The CB includes a 1×1 convolution
operation, two 3×3 convolution operations, a ReLU activation
function, and a 1×1 convolution operation.

Fig. 2. Structure of the proposed boundary generation module (left) and
boundary-guided refinement module (right). Here, ↑ and ↓ denote the up-
sampling and down-sampling operations, respectively.

C. Boundary-guided Refinement Module (BRM)

Traditional methods usually extract and refine lesion-aware
features at a single layer, which limits their abilities to use
complementary information across different layers. In this
study, we propose the BRM to obtain polyp-aware feature
representations by introducing boundary guidance.

As shown in the right part of Fig. 2, BRM takes Fi of
the current layer, the prediction Si+1 of the adjacent high
layer, and the boundary map Sb as the inputs and outputs
the prediction Si of the current layer. Specifically, Fi is
first processed by two 3×3 convolution operations, and the
resultant feature F̂i is element-multiplied with Si+1 and Sb,
respectively. With such operations, the feature is refined to
focus more on the polyp-aware regions. Note that, since Si+1

and Sb have different sizes to F̂i, they should be processed
by an up-sampling or down-sampling operation before the
multiplication operation. We use the bilinear interpolation for
these re-sampling operations. Then, each result of the product
is added to F̂i, and the results of addition are concatenated.
Finally, we process the concatenated feature with a convolu-
tional block to obtain an intermediate prediction. We then add
the intermediate prediction with Si+1 to obtain the prediction
Si of the current layer:

Si = CB( c©(F̂i⊗σ(Si+1)+F̂i, F̂i⊗σ(Sb)+F̂i))+Si+1, (3)

where CB(·) denotes the operation of the convolutional block,
⊗ means the element-wise multiplication, σ(·) is the Sigmoid
activation function.
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D. Loss Function

The overall loss function of the proposed multi-task polyp
segmentation method includes two types of supervision, each
of which corresponds to a single task:

Ltotal = α · LωB(Sb, Gb) +
∑5

i=2
Ls(Si, G), (4)

where α is the weight to balance the two terms, and we set
it to 1 based on the ablation studies in Section III-C. LωB
is the weighted binary cross-entropy loss for polyp boundary
segmentation. Ls, formulated as the linear combination of LωB
and weighted intersection over union (IoU) loss, is the loss
for polyp region segmentation. We place Ls and LωB next to
the dotted arrows to indicate supervision in Fig. 1. G and Gb
are the ground truth masks of the polyp region and boundary.
Since most datasets do not provide the boundary mask, we
apply the Canny edge detector to obtain this information.

E. Implementation Details

We adopt PVTv2-B2 [24] as backbone of BRNet, which is
pre-trained on ImageNet [26]. To optimize BRNet, we utilize
the Adam algorithm with an initial learning rate of 5e − 4.
BRNet is trained for 50 epochs under the batch size of 32.
We decay the learning rate by a rate of 0.1 every 20 epoch.
To reduce over-fitting, several data augmentation strategies
are used, i.e., random horizontal flipping/rotation. Moreover,
following PraNet [16] we resize the image to 352× 352, and
utilize a multi-scale training strategy, which further adjusts the
image sizes by randomly choosing a scale from {0.75, 1, 1.25}
to train the network. During the inference stage, we merely
resize the images to 352× 352 with no data augmentation.

III. EXPERIMENTS

A. Experimental Details

1) Datasets: For model evaluation, we choose five public
datasets, including Kvasir [27], CVC-ClinicDB [28], CVC-
ColonDB [32], ETIS [1], and CVC-300 [33]. The same data
settings of PraNet [16] are used in this study. Specifically, 90%
of images from CVC-ClinicDB and Kvasir are used to train
the model, while the remaining 10% of images from these two
datasets and partial images of other three datasets are used to
test the model.

2) Evaluation Metrics: Six metrics are selected to quantita-
tively evaluate the segmentation ability of our proposed model,
including mean dice score (mDice), mean IoU (mIoU ),
weighted F-measure (Fωβ ) [34], E-measure (Emaxφ ) [35], S-
measure (Sα) [36], and mean absolute error (MAE). mDice
and mIoU measure the regional similarity between the pre-
diction and ground truth, while Sα evaluates the structural
similarity between them. Fωβ evaluates the performance by
considering both recall and precision. Emaxφ computes the
results at the image and pixel levels. MAE calculates the
mean of the absolute error between the prediction and ground
truth. Higher values of the first five metrics yet smaller value
of MAE shows a better segmentation performance.

Fig. 3. Qualitative results of different methods. Zoom-in for more details.

B. Results

1) Quantitative Results: To validate the superiority of our
BRNet, we compare it with 7 methods, including U-Net [9],
U-Net++ [10], PraNet [16], EU-Net [13], MSNet [29], LDNet
[30], and FCBFormer [31]. TABLE I and TABLE II show the
results, in which the best results are marked in bold.

The results of in-domain tests on Kvasir and CVC-ClinicDB
are presented in TABLE I. As shown, our BRNet outperforms
competing methods in most of metrics. For instance, BRNet
surpasses FCBFormer [31], the second best method, by ap-
proximately 1.4%, 2.5%, and 1.3% in terms of mDice, mIoU ,
and Fωβ on Kvasir. Compared to PraNet, BRNet achieves
1.9%, 2.0%, 1.6%, and 1.3% improvements in terms of
mDice, mIoU , Fωβ , and Sα respectively on CVC-ClinicDB.
Also, it is clear that our BRNet has relatively smaller standard
deviation values compared to other methods. These results
indicate that BRNet is more competent for accurate polyp
segmentation than other methods under different scenarios.
TABLE II presents the results of three out-of-domain tests.
As seen, BRNet has the top performance across datasets.
Compared to LDNet, BRNet achieves 1.5%, 1.2%, 2.1%, 1.6%
and 0.7% gains in terms of mDice, mIoU , Fωβ , Emaxφ and
Sα, respectively, on CVC-ColonDB. Similarly, in terms of
mDice, mIoU , Fωβ , Emaxφ , Sα and MAE, BRNet achieves
4.2%, 3.0%, 3.9%, 3.1%, 1.7% and 0.3% improvements over
MSNet on ETIS, which is one of the most challenging datasets.
Additionally, BRNet is ahead of FCBFormer by 1.4%, 2.4%,
2.4%, and 1.9% in terms of mDice, mIoU , Fωβ , and Sα on
CVC-300. These findings confirm the superior generalization
ability of our BRNet. A possible reason of above results is that
our BRNet mines and leverages the boundary cues through two
well-designed modules to improve the representation ability of
polyps.

2) Qualitative Results: Fig. 3 provides a visual comparison
of segmentation results among seven methods under different
lesion scenarios. When it comes to small polyps, shown in the
1st and 2nd rows, BRNet achieves more precise segmentation
while some competing methods fail to detect small polyps. The
irregular shapes and large sizes of the polyps (see the 3rd and
4th rows) present tough challenges for accurate segmentation.
Despite this, BRNet detects the polyp regions more accurately
than other methods. As presented in the 5th and 6th rows,
almost all competing methods fail to recognize the polyps with
blurred boundaries, but our BRNet still shows excellent perfor-
mance and produces continuous and clear boundaries. Overall,
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TABLE I
QUANTITATIVE RESULTS (MEAN ± STANDARD DEVIATION ACROSS TEST IMAGES) ON KVASIR AND CVC-CLINICDB.

Methods
Kvasir [27] CVC-ClinicDB [28]

mDice mIoU Fωβ Emaxφ Sα MAE mDice mIoU Fωβ Emaxφ Sα MAE

U-Net [9] 0.820±0.152 0.755±0.151 0.793±0.155 0.898±0.091 0.857±0.078 0.055±0.020 0.824±0.177 0.767±0.174 0.811±0.185 0.917±0.118 0.889±0.092 0.019±0.007
U-Net++ [10] 0.823±0.152 0.752±0.155 0.808±0.154 0.906±0.780 0.861±0.081 0.048±0.023 0.797±0.166 0.741±0.172 0.785±0.167 0.898±0.092 0.872±0.087 0.022±0.008
PraNet [16] 0.901±0.091 0.848±0.093 0.885±0.094 0.943±0.054 0.915±0.049 0.030±0.014 0.902±0.111 0.858±0.111 0.896±0.115 0.957±0.069 0.935±0.060 0.009±0.010
EU-Net [13] 0.877±0.081 0.822±0.089 0.847±0.093 0.936±0.052 0.897±0.046 0.039±0.015 0.881±0.105 0.832±0.115 0.869±0.120 0.957±0.067 0.913±0.062 0.018±0.011
MSNet [29] 0.907±0.080 0.862±0.085 0.892±0.088 0.944±0.050 0.923±0.043 0.028±0.017 0.921±0.102 0.880±0.105 0.913±0.113 0.971±0.068 0.942±0.053 0.008±0.007
LDNet [30] 0.897±0.085 0.854±0.090 0.879±0.092 0.942±0.052 0.920±0.048 0.027±0.015 0.903±0.110 0.860±0.115 0.892±0.117 0.960±0.066 0.938±0.065 0.011±0.014
FCBFormer [31] 0.904±0.080 0.846±0.089 0.892±0.092 0.958±0.048 0.908±0.045 0.027±0.015 0.860±0.092 0.806±0.101 0.851±0.107 0.939±0.057 0.899±0.055 0.020±0.011
BRNet (ours) 0.918±0.053 0.871±0.059 0.905±0.061 0.957±0.037 0.928±0.031 0.026±0.015 0.921±0.067 0.878±0.073 0.912±0.078 0.967±0.046 0.948±0.039 0.008±0.005

TABLE II
QUANTITATIVE RESULTS (MEAN ± STANDARD DEVIATION ACROSS TEST

IMAGES) ON CVC-COLONDB, ETIS AND CVC-300.

Methods
CVC-ColonDB [32]

mDice mIoU Fωβ Emaxφ Sα MAE

U-Net [9] 0.511±0.124 0.440±0.122 0.491±0.128 0.759±0.080 0.710±0.068 0.059±0.021
U-Net++ [10] 0.489±0.120 0.411±0.126 0.467±0.121 0.761±0.065 0.692±0.070 0.061±0.024
PraNet [16] 0.716±0.077 0.645±0.077 0.699±0.079 0.847±0.048 0.820±0.043 0.043±0.014
EU-Net [13] 0.744±0.074 0.661±0.080 0.710±0.086 0.870±0.049 0.831±0.044 0.042±0.016
MSNet [29] 0.755±0.072 0.678±0.076 0.736±0.080 0.883±0.049 0.836±0.040 0.041±0.017
LDNet [30] 0.780±0.078 0.711±0.081 0.755±0.084 0.876±0.047 0.859±0.046 0.032±0.015
FCBFormer [31] 0.754±0.065 0.668±0.071 0.724±0.076 0.875±0.040 0.828±0.039 0.037±0.015
BRNet (ours) 0.795±0.048 0.723±0.053 0.776±0.056 0.892±0.030 0.866±0.03 0.031±0.014

Methods
ETIS [1]

mDice mIoU Fωβ Emaxφ Sα MAE

U-Net [9] 0.406±0.144 0.343±0.137 0.366±0.147 0.645±0.104 0.682±0.076 0.036±0.006
U-Net++ [10] 0.413±0.133 0.342±0.136 0.390±0.130 0.704±0.085 0.681±0.070 0.035±0.008
PraNet [16] 0.630±0.096 0.576±0.089 0.600±0.094 0.792±0.061 0.791±0.052 0.031±0.009
EU-Net [13] 0.651±0.088 0.575±0.088 0.594±0.095 0.803±0.055 0.788±0.052 0.035±0.010
MSNet [29] 0.718±0.079 0.666±0.075 0.677±0.085 0.828±0.055 0.840±0.043 0.020±0.006
LDNet [30] 0.659±0.091 0.596±0.087 0.614±0.090 0.795±0.054 0.797±0.053 0.043±0.013
FCBFormer [31] 0.663±0.093 0.581±0.098 0.608±0.103 0.814±0.057 0.789±0.056 0.027±0.006
BRNet (ours) 0.760±0.056 0.696±0.057 0.716±0.064 0.859±0.041 0.857±0.033 0.017±0.005

Methods
CVC-300 [33]

mDice mIoU Fωβ Emaxφ Sα MAE

U-Net [9] 0.717±0.051 0.639±0.053 0.684±0.056 0.867±0.039 0.842±0.029 0.022±0.004
U-Net++ [10] 0.714±0.048 0.636±0.050 0.687±0.050 0.884±0.022 0.838±0.027 0.018±0.004
PraNet [16] 0.873±0.029 0.804±0.038 0.843±0.039 0.938±0.023 0.924±0.015 0.010±0.003
EU-Net [13] 0.856±0.023 0.782±0.029 0.817±0.030 0.932±0.018 0.909±0.012 0.011±0.003
MSNet [29] 0.869±0.028 0.808±0.030 0.848±0.030 0.942±0.019 0.925±0.012 0.010±0.003
LDNet [30] 0.862±0.020 0.795±0.022 0.828±0.023 0.923±0.017 0.920±0.009 0.010±0.003
FCBFormer [31] 0.884±0.024 0.812±0.032 0.854±0.031 0.953±0.015 0.922±0.013 0.008±0.003
BRNet (ours) 0.898±0.020 0.836±0.026 0.878±0.026 0.956±0.016 0.941±0.009 0.007±0.002

our BRNet performs better than these competing methods
when facing diverse challenging factors and complex situations
in polyp segmentation. Through observation, we have found
that our BRNet may also fail in some special situations, e.g.,
polyps with extremely flat appearance (see the left part of Fig.
4) and polyp with camouflage characteristics (see the right
part of Fig. 4). In the future, we will improve the ability to
differentiate the polyps from background through uncertainty
quantification. Also, more boundary extraction methods will
be used to further enhance the boundary representation.

Fig. 4. Illustration of failure cases.

C. Ablation Study

Here, we quantify the influence of each module, i.e., BGM
and BRM, through ablation experiments. All experiments are
carried out under the same settings as described in Section
II-E. The results are shown in TABLE III, in which only the
values of mDice and mIoU are given due to space limitation.

1) Effectiveness of BGM: BGM aims to strengthen the
model’s ability to learn and extract boundary information.
Here, we remove BGM while keeping other parts unchanged.

In this case, the input Sb of BRM is also removed. As
illustrated by the first and third rows of TABLE III, removing
BGM leads to obvious performance drop. Concretely, mDice
decreases by 3.7% and 5.7%, while mIoU decreases by 3.6%
and 5.9% on ETIS and CVC-300, respectively. These indicate
the positive role of BGM in accurate segmentation.

2) Effectiveness of BRM: In our BRM, we utilize Si+1

and Sb to help to refine the polyp-aware features in an
element-wise multiplication operation. Here, we explore the
effectiveness of such an operation. For this purpose, we
directly concatenate Fi, Si+1, and Sb and use the convolutional
block to process the concatenated feature for generating the
prediction Si. As shown in the second and last rows of TABLE
III, the performance decreases obviously after changing BRM.
For example, it results in decreases of 3.4%, 4.1%, and 4.7%
for mDice, mIoU , and Fωβ on CVC-300. These results indi-
cates that the design concept of BRM contributes to achieving
excellent segmentation performance.

TABLE III
RESULTS OF ABLATION STUDIES ON ETIS AND CVC-300.

Methods ETIS [1] CVC-300 [33]
mDice mIoU mDice mIoU

w/o BGM 0.723 0.660 0.841 0.777
w/o BRM 0.743 0.683 0.864 0.795

BRNet 0.760 0.696 0.898 0.836

3) Effectiveness of the Weight α: In Eq. (4), α is used
to balance the contribution of the boundary loss and the
polyp loss. Here, we investigate its impact by setting it to
{0.5, 1, 1.5, 2}. As shown in Fig. 5, we can obtain relatively
better results when α = 1. Of course, the performance may be
further improved under other settings. We leave the optimal
weight selection as a possible future work.

Fig. 5. Results of our method under different settings of α in Eq. (4).

IV. CONCLUSION

In this letter, we propose a novel BRNet for polyp segmenta-
tion. Specifically, we first utilize a BGM to generate boundary
map by integrating multi-level features. Then, we utilize BRM
at each layer to refine polyp-aware features. Experiments on
five datasets support the effectiveness of our design concepts.
BRNet can achieve over 0.918 mDice and 0.871 mIoU in
two in-domain tests and over 0.760 mDice and 0.696 mIoU
in three out-of-domain tests.
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