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A B S T R A C T

Open vocabulary segmentation is a challenging task that aims to segment out the thousands of unseen
categories. Directly applying CLIP to open-vocabulary semantic segmentation is challenging due
to the granularity gap between its image-level contrastive learning and the pixel-level recognition
required for segmentation. To address these challenges, we propose a unified pipeline that leverages
physical structure regularization to enhance the generalizability and robustness of open vocabulary
segmentation. By incorporating physical structure information, which is independent of the training
data, we aim to reduce bias and improve the model’s performance on unseen classes. We utilize low-
level structures such as edges and keypoints as regularization terms, as they are easier to obtain and
strongly correlated with segmentation boundary information. These structures are used as pseudo-
ground truth to supervise the model. Furthermore, inspired by the effectiveness of comparative
learning in human cognition, we introduce the weighted patched alignment loss. This loss function
contrasts similar and dissimilar samples to acquire low-dimensional representations that capture the
distinctions between different object classes. By incorporating physical knowledge and leveraging
weighted patched alignment loss, we aim to improve the model’s generalizability, robustness, and
capability to recognize diverse object classes. The experiments on the COCO Stuff, Pascal VOC,
Pascal Context-59, Pascal Context-459, ADE20K-150, and ADE20K-847 datasets demonstrate that
our proposed method consistently improves baselines and achieves new state-of-the-art in the open
vocabulary segmentation task.

1. Introduction
Image segmentation is a fundamental task in computer

vision recognition which requests costly dense annotations.
Existing deep learning-based semantic segmentation meth-
ods heavily rely on large amounts of labeled data. However,
currently, the datasets often consist of only tens to hundreds
of categories, and the expensive process of data collection
and annotation limits our ability to expand the categories
further. Furthermore, in practical scenarios, new objects
frequently appear, but obtaining sufficient annotations for
these novel objects is often impractical and challenging.

The recent development of the large-scale vision-language
model, CLIP Radford, Kim, Hallacy, Ramesh, Goh, Agar-
wal, Sastry, Askell, Mishkin, Clark et al. (2021), has marked
a significant advancement in the field of image recognition,
specifically in open-vocabulary image classification. This
enables recognition of arbitrary categories at the image
level, a notable success in the domain. Motivated by this
success, researchers are now exploring the potential of
adapting such models to semantic segmentation. The goal
is to achieve a human-like understanding of scenes, which
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typically involves recognizing thousands of categories in an
open-vocabulary manner.

However, applying the CLIP model to open-vocabulary
semantic segmentation Li, Weinberger, Belongie, Koltun
and Ranftl (2022); Zhou, Loy and Dai (2021); Ghiasi, Gu,
Cui and Lin (2022); Liang, Wu, Dai, Li, Zhao, Zhang,
Zhang, Vajda and Marculescu (2022) presents significant
challenges. The core issue lies in the fact that CLIP is
trained through image-level contrastive learning, which does
not inherently provide the pixel-level recognition capability
essential for effective semantic segmentation. A proposed
solution to overcome this granularity gap is to fine-tune
the CLIP model on segmentation datasets. Nonetheless, this
approach has its limitations. Segmentation datasets are sub-
stantially smaller in size compared to the expansive vision-
language pre-training datasets. This size discrepancy often
leads to a diminishment in the recognition capabilities of the
fine-tuned models when applied to open-vocabulary tasks.

To alleviate directly finetuning the CLIP model to the
segmentation task, another solution is to freeze the CLIP fea-
tures and make the segmentation model adapt to the learned
open vocabulary classification model Xu, Zhang, Wei, Lin,
Cao, Hu and Bai (2022); Ding, Wang and Tu (2022b). In
particular, the two-stage approaches have been proposed to
first generate the class-agnostic mask proposals and then
leverage pre-trained CLIP for open-vocabulary classification
to identify the labels for each pixel. However, the success
of these methods relies on two assumptions: (1) the model
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can generate accurate class-agnostic mask proposals, and
(2) pre-trained CLIP can accurately transfer its classification
performance to masked image proposals.

However, a study conducted by Ovseg Liang, Wu, Dai,
Li, Zhao, Zhang, Zhang, Vajda and Marculescu (2023) high-
lights a critical limitation in this approach. Their findings
reveal that while class-agnostic masks generally succeed
in locating objects within images, they often fall short in
assigning precise class labels. This issue was examined in
two distinct scenarios: in particular, as shown in Figure 1,
they utilized an “oracle" mask generator alongside an or-
dinary CLIP classifier, and the study employed ground-
truth masks as region proposals. These were then classified
using a pre-trained CLIP model. Under these conditions, the
model achieved a mIoU of only 20.1% on the ADE20K-
150 dataset, indicating a significant shortfall in classifi-
cation accuracy. Conversely, when assuming an “oracle"
classifier paired with an ordinary mask proposal generator,
the model’s performance improved markedly. In this setup,
masked region proposals were extracted and each region was
compared with ground-truth object masks to ascertain the
object with the highest overlap, subsequently assigning the
corresponding object label to the extracted region. Despite
the imperfect nature of the region proposals, this approach
yielded a considerably higher mIoU of 66.5%.

This analysis clearly demonstrates that pre-trained CLIP
cannot satisfactorily classify masked images, serving as
the performance bottleneck for two-stage open-vocabulary
segmentation models. This limitation arises due to the purely
data-driven nature of current open-vocabulary methods. To
solve this challenging problem, Ovseg Liang et al. (2023)
proposed to adapt the CLIP by finetuning it on masked im-
ages and corresponding text labels through training data col-
lection by mining an existing image-caption dataset. How-
ever, training such models can be challenging and often
requires a large amount of training data, which contradicts
the few-shot setting of both tasks.

Recent progress in deep learning suggests that the back-
bone network should be capable of extracting general rep-
resentative features for both seen and unseen class images,
regardless of the training data. However, purely data-driven
models optimized for current open-vocabulary methods may
lead to locally optimal representations that are biased toward
the training data. This bias can hinder the model’s general-
ization in accurately recognizing the newly appeared classes,
especially those with similar patterns to the base classes.
To overcome this limitation, a potential solution is to use
additional tasks as constraints to regularize the training.

To address these challenges, we propose to utilize a
physical structure of regularized information to regulate
the training of the open vocabulary segmentation model.
As illustrated in Figure 2, our method includes a physical
structure information prediction module through multi-task
learning. This module aims to enhance the representation
capability of the feature extraction module and reduce bias
in the segmentation prediction, particularly for the unseen
classes.

We utilize low-level structures such as keypoints as
constraints for regularization. These low-level structures are
easier to obtain than semantic-text labels and can be consid-
ered physical structure information that is independent of the
training data for segmentation class prediction, yet strongly
correlated with segmentation boundary information.

To overcome the bottleneck issue of identifying classes
for masked images, an alternative and intuitive approach
is to differentiate between different objects. Extensive re-
search He, Fan, Wu, Xie and Girshick (2020); Grill, Strub,
Altché, Tallec, Richemond, Buchatskaya, Doersch, Pires,
Guo, Azar et al. (2020b); Chen, Kornblith, Norouzi and Hin-
ton (2020a) has demonstrated that children grasp new con-
cepts more easily when they compare an image containing
a dog to other images featuring dogs, enabling them to infer
that the target image represents a dog, as opposed to merely
reading about animals in a book. This raises the question:
What makes this comparative method more effective? The
effectiveness of this approach can be attributed to the fact
that individuals with limited prior knowledge, like children,
find it simpler to learn new things by contrasting similarities
and differences, rather than attempting to recognize each
item individually. Initially, a child may encounter challenges
in identifying a dog. However, over time, the child learns to
discern the shared characteristics among dogs, such as the
shape of their nose and their body posture.

Inspired by these insightful studies, we propose a weighted
patch-aligned contrastive loss that aims to acquire low-
dimensional representations of data by contrasting similar
and dissimilar samples. This approach mirrors the way a
child navigates the process of recognizing a new object. By
leveraging the proposed weighted patch-aligned contrastive
loss, we aim to enhance the open vocabulary segmentation
task by effectively capturing the distinctions between differ-
ent object classes.

However, the previous CLIP model primarily focused on
image-level alignment between categories and the entire im-
age, making it less suitable for segmentation tasks for the fol-
lowing reasons: 1) Image segmentation involves pixel-level
classification, where both local and global representations
play crucial roles. However, CLIP was designed primarily
for image-level representations and does not fully capture
the pixel-level details required for segmentation tasks. 2) In
typical images, multiple objects coexist, such as a keyboard,
desk, and computer. However, the global contrastive loss
used in CLIP cannot effectively distinguish between these
different objects within the same image. To address these
limitations, we propose a novel approach by dividing each
image into patches to align it more effectively with text clas-
sification. This patch-based approach allows us to achieve
a balance of weights within each image by calculating the
pixel numbers, which are then used to compute a weighted
sum over vision features. This ensures that each patch’s
contribution is appropriately considered, leading to more
accurate segmentation results.

1. We propose physical consistency loss for open vo-
cabulary segmentation to enforce spatial coherence
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Figure 1: Given the mask ground truth as region proposals
and fed them into a pre-trained CLIP for classification. This
model achieved only a mean Intersection over Union (mIoU)
of 20.1% on the ADE20K-150 dataset. Next, given the model
with the classification ground truth, but the mask will be
predicted by the model. Despite imperfect region proposals,
this model achieved a significantly higher mIoU of 66.5%. This
analysis clearly demonstrates that pre-trained CLIP cannot
satisfactorily classify masked images, serving as the perfor-
mance bottleneck for two-stage open-vocabulary segmentation
models. This limitation arises due to the purely data-driven
nature of current open-vocabulary methods.

and structural consistency in segmentation outputs to
reduce the bias due to the limitation of the pure data-
driven model.

2. To further enhance discrimination between differ-
ent object classes, we introduce the weighted patch-
aligned contrastive loss, which leverages the compara-
tive approach to improve the model’s ability to capture
the distinctions between classes. By integrating the
weighted patch-aligned contrastive loss, our model
achieves efficient discrimination capabilities, leading
to more accurate and refined segmentation outputs.

3. Our proposed method improves the open-vocabulary
segmentation baselines significantly and achieves new
state-of-the-art results on several datasets, including
COCO Stuff, ADE20K, Pascal VOC, and Pascal Con-
text.

2. Related Work
2.1. Large Foundation Vision-language Models

The objective of large foundation visual-language is
to acquire generic representations of vision and language.
Early studies in this domain Su, Zhu, Cao, Li, Lu, Wei and
Dai (2019); Lu, Batra, Parikh and Lee (2019); Chen, Li,
Yu, El Kholy, Ahmed, Gan, Cheng and Liu (2020c); Li,
Yin, Li, Zhang, Hu, Zhang, Wang, Hu, Dong, Wei et al.
(2020) primarily followed a two-step approach. Initially,
models were pre-trained on visual and language data of
moderate size. Subsequently, fine-tuning was conducted on
downstream visual-language tasks, such as Visual Question
Answering (VQA) Antol, Agrawal, Lu, Mitchell, Batra,
Zitnick and Parikh (2015) and image captioning, to assess

the advantages of pre-training. However, recent advance-
ments with CLIPRadford et al. (2021) and ALIGN Jia,
Yang, Xia, Chen, Parekh, Pham, Le, Sung, Li and Duerig
(2021) have demonstrated that visual-language models pre-
trained on large-scale noisy text-image pairs possess open-
vocabulary recognition capabilities, thus serving as a robust
foundation for downstream tasks. Numerous recent studies
have verified this observation and achieved remarkable
performance in open-vocabulary image recognition Yuan,
Chen, Chen, Codella, Dai, Gao, Hu, Huang, Li, Li, Liu, Liu,
Liu, Lu, Shi, Wang, Wang, Xiao, Xiao, Yang, Zeng, Zhou
and Zhang (2021); Yu, Wang, Vasudevan, Yeung, Seyedhos-
seini and Wu (2022); Alayrac, Donahue, Luc, Miech, Barr,
Hasson, Lenc, Mensch, Millican, Reynolds, Ring, Ruther-
ford, Cabi, Han, Gong, Samangooei, Monteiro, Menick,
Borgeaud, Brock, Nematzadeh, Sharifzadeh, Binkowski,
Barreira, Vinyals, Zisserman and Simonyan (2022) as well
as other related tasks Gu, Lin, Kuo and Cui (2021); Wang,
Lu, Li, Tao, Guo, Gong and Liu (2022c); Hessel, Holtzman,
Forbes, Bras and Choi (2021); Patashnik, Wu, Shecht-
man, Cohen-Or and Lischinski (2021). T-MASS Wang,
Sun, Wang, Liu, Dianat, Rabbani, Rao and Tao (2024)
introduces a stochastic text modelling method, treating text
as a stochastic embedding to enhance semantic flexibility
and resilience. Meanwhile, LLaVA-Med Li, Wong, Zhang,
Usuyama, Liu, Yang, Naumann, Poon and Gao (2024a)
presents a cost-effective vision-language conversational as-
sistant, specifically trained to address open-ended questions
about biomedical images. Furthermore, E2VPT Han, Wang,
Cui, Cao, Wang, Qi and Liu (2023) improves model fine-
tuning through the integration of learnable prompts within
key model layers, complemented by a prompt pruning pro-
cedure that efficiently preserves performance by selectively
removing less critical prompts.

In this paper, we also utilize the pre-trained foundation
vision-language model for our open-vocabulary segmenta-
tion prediction.

2.2. Open-vocabulary Semantic Segmentation
Previous research Zhao, Puig, Zhou, Fidler and Torralba

(2017); Xian, Choudhury, He, Schiele and Akata (2019);
Bucher, Vu, Cord and Pérez (2019); Mukhoti, Lin, Pour-
saeed, Wang, Shah, Torr and Lim (2023); Liu, Zhang, Lin
and Liu (2020) on open-vocabulary semantic segmentation
has focused on learning a joint embedding space that con-
nects image pixels with class names or descriptions. More
recently, inspired by the effectiveness of large-scale vision-
language pre-training models in open-vocabulary recog-
nition, several approaches have explored their application
in the context of open-vocabulary semantic segmentation.
Some of these approaches Li et al. (2022); Zhou et al.
(2021); Ghiasi et al. (2022); Liang et al. (2022); Qin, Han,
Wang, Nie, Yin and Xiankai (2023); Liu, Wu, Zhao, Fang,
Foo, Cheng and Lin (2024) involve fine-tuning the vision-
language pre-training models. However, this either requires
a substantial amount of additional data or compromises
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Figure 2: As depicted in the figures, we introduce a physical consistency loss to enhance open vocabulary segmentation. The
physical consistency loss enforces spatial coherence and structural consistency in segmentation outputs, mitigating bias arising from
pure data-driven models. To augment discrimination among object classes, we introduce the weighted patch-aligned contrastive
loss. This novel loss leverages a comparative strategy, enhancing the model’s capacity to distinguish between classes. Through
the integration of the weighted patch-aligned contrastive loss, our model attains enhanced discrimination abilities, resulting in
improved accuracy and refinement of segmentation outputs.

the open-vocabulary capability of the vision-language pre-
training model.

An alternative framework called SimSeg Xu et al. (2022)
has been proposed, which operates in two stages: first, it
generates masked image crops, and then it recognizes these
crops using a frozen CLIP model. However, SimSeg relies
on a cumbersome mask generator and requires multiple
forward passes of CLIP, resulting in inefficiency in terms
of both model size and inference speed. Additionally, the
mask generator lacks awareness of the CLIP model, further
limiting its performance.

OMG-Seg Li, Yuan, Li, Ding, Wu, Zhang, Li, Chen
and Loy (2024b) introduces a versatile, transformer-based
model capable of handling multiple segmentation tasks, in-
cluding image and video segmentation, with notably reduced
computational demands. Similarly, LEVOS Lu, Zhang, Sun,
Guo, Cao, Fei, Yang and Chen (2023) offers an unsupervised
video object detection approach utilizing simulated dense
labels and motion cues to enhance detection accuracy. Fur-
thermore, SG-Net Liu, Cui, Tan and Chen (2021) presents a
unified architecture that combines detection, segmentation,
and tracking, promoting enhanced feature sharing and joint
optimization across these tasks.

MaskCLIP Ding et al. (2022b) addresses some of the
limitations of the two-stage framework by progressively
refining the predicted masks using the CLIP encoder and
incorporating masks in attention layers, following a similar
approach introduced in Cheng, Misra, Schwing, Kirillov and
Girdhar (2022). However, MaskCLIP still relies on a heavy
mask generator, the initial mask prediction remains CLIP-
unaware, and the mask prediction and recognition processes
are coupled together. However, the previous CLIP-based

models, while effective for image-level classification, fall
short in segmentation tasks due to their lack of pixel-level
detail and inability to distinguish between multiple objects
in an image. To address these issues, we propose a novel
patch-based approach that divides images into patches for
better alignment with text classification, using pixel counts
to compute a weighted sum over vision features for each
patch.

2.3. Contrastive Loss
Currently self-supervised contrastive learning meth-

ods He et al. (2020); Grill et al. (2020b) have gained
popularity for learning feature extractors from unlabeled
images as pre-training for downstream tasks. These methods
aim to bring the representations of different views of the
same image closer while pushing away the representations of
different images. For instance, SimCLR Chen et al. (2020a)
presents a straightforward self-supervised learning frame-
work by applying contrastive learning to representations of
the same image under various data augmentations. On the
other hand, MoCo He et al. (2020); Chen, Fan, Girshick and
He (2020b) employs a moving average network (momentum
encoder) to increase the negative memory bank size.

Beyond direct contrastive loss utilization, some ap-
proaches Grill, Strub, Altché, Tallec, Richemond, Buchatskaya,
Doersch, Avila Pires, Guo, Gheshlaghi Azar et al. (2020a);
Chen and He (2021) have found that learning consistent
representations from positive pairings can also lead to reli-
able representations. BYOL Grill et al. (2020a), for instance,
proposes training a network without negative samples. The
method employs a Siamese encoder to encode features and
minimizes the cosine similarity between the query and
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key embeddings to achieve good representations. However,
BYOL requires a large batch size during training and may
face convergence challenges. To address this, Simsiam Chen
and He (2021) eliminates the momentum key encoder and
adopts a stop-gradient strategy to prevent collapsing issues.

Moreover, in the context of enhancing encoder represen-
tation for downstream detection tasks, SCRL Roh, Shin, Kim
and Kim (2021) extends consistency loss to the Region of In-
terest (ROI) in the intersection region of two views. For pro-
moting consistency between embeddings, CO2 Wei, Wang,
Shen and Yuille (2020) and RELIC Mitrovic, McWilliams,
Walker, Buesing and Blundell (2020) introduce regulariza-
tion using KL loss on embeddings generated from differ-
ent data augmentations. These methods aim to refine the
representations and improve the performance of the feature
extractor for subsequent tasks.

DNC Wang, Han, Zhou and Liu (2022a) employs a non-
parametric approach using sub-centroids of training data to
represent class distributions, facilitating classification based
on proximity in feature space. Wang et al. Wang and Liu
(2021) explore the balance between uniformity and temper-
ature 𝑡 in contrastive learning, highlighting that while uni-
formity aids in feature distinction, excessive uniformity can
compromise the semantic integrity crucial for downstream
tasks. Wang et al. Wang, Liang and Liu (2022b) also propose
a training framework that improves query-based models by
enabling the learning of discriminative query embeddings.
Furthermore, Zhao et al. describe a contrastive learning-
based training strategy, starting with pretraining using a
pixel-wise, label-based contrastive loss, followed by fine-
tuning with cross-entropy loss, to enhance pixel classifier
effectiveness Zhao, Vemulapalli, Mansfield, Gong, Green,
Shapira and Wu (2021).

However, while all these contrastive methods focus on
image-level features, they do not take into account the impact
of the size of each object inside the image. In this paper, we
propose a novel Weighted Patch-Level Contrastive Loss to
align object features with open vocabulary category features.
This new loss function aims to address the granularity gap
by considering the size and importance of individual objects
within the image during contrastive learning.

3. Method
As shown in Figure 2, to address the challenge of

adapting the image-level pre-trained CLIP model to open-
vocabulary semantic segmentation, we freeze the CLIP
features and force the decoder to adapt to the learned open
vocabulary segmentation model. To achieve this goal, we
need accurate class-agnostic mask proposals and accurate
transfer of CLIP’s classification performance to masked
image proposals, which is not always achieved due to the
model being biased toward the trained classes and not able to
identify the classification. In particular, most of the current
models are able to know ‘where’ is the object but difficult to
identify ‘what’ is the object.

To address these limitations, we propose physical struc-
ture regularization. By utilizing low-level structures like
keypoints, which are less dependent on segmentation train-
ing data, the model’s representation capability can be en-
hanced, and bias in segmentation prediction is reduced,
especially for unseen classes. Further elaboration on this
approach will be provided in Section 3.1.

Inspired by how humans learn by contrasting similarities
and differences, we propose a weighted patched alignment
loss to capture distinctions between different object classes
and enhance open-vocabulary segmentation. Further elabo-
ration on this approach will be provided in Section 3.2.

3.1. Physical Structure Regularization for Open
Vocabulary Segmentation

In Figure 2, we present a unified pipeline designed to en-
hance the generalizability and robustness of open vocabulary
segmentation. This is achieved through the incorporation of
physical structure regularization. We treat the open vocab-
ulary segmentation prediction as the primary task, with the
regularization term serving as an auxiliary task. Both tasks
are jointly trained to optimize the backbone, enhancing its
robustness.
As shown in Figure 3, our approach employs a shared-
parameter backbone, utilizing the segmentation’s feature
extractor parameters to generate multi-level features. These
features are processed through a 1×1 convolution, encoding
them into a 256-dimensional format to ensure spatial consis-
tency and computational efficiency. Features from adjacent
network layers, denoted as 𝐹𝑡 and 𝐹𝑡−1, are fused by concate-
nation and then normalized. A subsequent 1×1 convolution,
coupled with a Sigmoid layer, is used to predict the physical
structure information, labeled as 𝑠𝑒𝑠𝑡. During model training,
this prediction is compared with the ground truth low-level
physical information, 𝑒𝑔𝑡.

The calculation of the physical structure regularization
loss 𝐿𝑝 is defined as follows:

𝐿𝑝 = 𝑓𝑜𝑐𝑎𝑙(𝑠𝑔𝑡, 𝑠𝑒𝑠𝑡), (1)

where 𝑠𝑔𝑡 and 𝑠𝑒𝑠𝑡 represent the pseudo ground truth physical
structures (e.g., edges or keypoints) and the estimated struc-
tures from our network, respectively. The function 𝑓𝑜𝑐𝑎𝑙 is
employed to compute the focal loss Lin, Goyal, Girshick, He
and Dollár (2017).

3.2. Weighted Patched-level Alignment
Contrastive Loss

The weighted patch-level contrastive loss is designed
to refine unimodal representations before fusion, serving as
an intermediate loss function for image-text representations
generated by transformer-based encoders. By utilizing an
InfoNCE loss, we constrain positive and negative pairs of the
projected vision and text features. As illustrated in Figure 4,
we leverage original patch representations obtained from
the transformer image encoder, focusing on alignment at
the finest-grained level and avoiding reliance on the [𝐶𝐿𝑆]
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Figure 3: Architecture of the Physical Structure Prediction Network. Our network architecture involves the extraction of multi-level
features and then being fed into three Refine modules (RF). Leveraging physical structure regularization, our method enhances
feature representation and mitigates bias within the data-driven model, thereby facilitating more robust segmentation prediction.

token representation. Since a single image patch can en-
compass multiple semantic concepts, we propose contrasting
image patches and texts with soft labels, calculated based on
pixel counts.

For each image patch representation 𝑥𝑝𝑎𝑡𝑐ℎ𝑖 and text
representation 𝑥𝑡𝑒𝑥𝑡𝑗 , we compute the similarity 𝑠𝑖𝑚 as:

sim(𝑥𝑝𝑎𝑡𝑐ℎ𝑖 , 𝑥𝑡𝑒𝑥𝑡𝑗 ) = 𝑜𝑖𝑚𝑎𝑔𝑒(𝑥
𝑝𝑎𝑡𝑐ℎ
𝑖 )𝑇 ⋅ 𝑜𝑡𝑒𝑥𝑡(𝑥𝑡𝑒𝑥𝑡𝑗 ) (2)

where 𝑜𝑖𝑚𝑎𝑔𝑒 and 𝑜𝑡𝑒𝑥𝑡 are linear projection layers for the
image and the text features.

With𝑁 image patches features in a batch and𝑀 text fea-
tures of possible classes, the segmentation-aware contrastive
loss 𝐿𝑠𝑎𝑐 can be defined as :

𝐿𝑠𝑎𝑐 =
𝑁
∑

𝑖=1

∑𝑀
𝑗=1𝑤𝑖,𝑗 exp

(

sim(𝑥𝑝𝑎𝑡𝑐ℎ𝑖 ,𝑥𝑡𝑒𝑥𝑡𝑗 )

𝜏

)

∑𝑀
𝑗=1 exp

(

sim(𝑥𝑝𝑎𝑡𝑐ℎ𝑖 ,𝑥𝑡𝑒𝑥𝑡𝑗 )

𝜏

)
(3)

where 𝜏 is a learnable temperature parameter, and 𝑤𝑖,𝑗 is the
normalized weight based on the number of pixels, which is
computed as the number of pixels in class 𝑗 divided by the
total number of pixels of the image patch 𝑖.

The proposed patch-level contrastive loss serves two
primary objectives: (1) aligning image and text features to fa-
cilitate cross-modal learning within the multimodal encoder
and (2) enhancing the image encoder’s sensitivity to capture
the semantic meaning of individual patches, a crucial aspect
for tasks involving pixel-level segmentation.

In the realm of open vocabulary segmentation, lever-
aging vision-language contrastive learning often leads to
overly broad textual descriptions. This generality arises from
the practice of using templates that merely announce the
presence of a certain object in an image without detailing
other contextual elements, such as "a photo of an object".
Consequently, background patches and those devoid of the
object of interest can negatively impact training, disrupt-
ing feature learning. Our novel loss function harnesses the
feature embeddings of different patches extracted by Vision
Transformer (ViT) and computes their similarity with the

text description, as illustrated in Equation 2. By doing so,
without altering the architecture of ViT-based graph en-
coders, we introduce a finer level of granularity that ef-
fectively mitigates these training challenges. However, we
acknowledge that operating at the patch level alone is not
entirely sufficient due to the persistence of extraneous noise
information within these patches. To address this limitation,
we venture further by proposing a weighted approach for
these patches. The core idea behind the weighting mecha-
nism revolves around considering the proportion of samples
within each patch that genuinely belong to the object class
of interest. This strategic weighting allows the model to al-
locate training emphasis more rationally, thereby enhancing
its ability to discern between relevant and irrelevant features
during the learning process. The implementation of this
notion is encapsulated in Equation 3, our proposed weighted
patch-level contrastive loss. Through these detailed expla-
nations and derivations, we aim to clarify the rationale
and methodology behind our formulation, reinforcing its
significance for advancing open vocabulary segmentation
tasks.

Combining with the physical structure regularization
loss 𝐿𝑝, the overall loss function used for the final optimiza-
tion will be:

𝐿 = 𝐿𝑠𝑎𝑐 + 𝐿𝑝. (4)

4. Experiment
4.1. Datasets and Evaluation Metric
4.1.1. Datasets

For a fair comparison with previous methodsXu et al.
(2023); Liang et al. (2023); Cho et al. (2023), our experi-
ments are conducted on 6 datasets: COCO Stuff, ADE20K-
150, ADE20K-847, Pascal Context-59, Pascal Context-459,
and Pascal VOC. Following the previous methods, all exper-
iments are trained on the training set of COCO Stuff and then
directly evaluated on the remaining datasets.

COCO Stuff Lin et al. (2014) comprises 164K images
with 171 annotated classes. It is divided into a training set
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Figure 4: The overall structure of the proposed weighted patch-level contrastive loss. Our approach utilizes patch representations
derived from the transformer image encoder, focusing on achieving alignment at the most granular level. Recognizing that a
single image patch may contain multiple semantic concepts, we advocate for a novel technique of contrasting image patches with
corresponding texts. This is facilitated by employing soft labels, which are calculated based on the count of pixels in each patch.

Table 1
The Category Similarity between various validate datasets and
the COCO Stuff training dataset. Measured by Hausdorff
distance and cosine similarity based on CLIP text encoder.

Dataset Category Similarity
Pascal VOC 0.91
Pascal Context-59 0.86
Pascal Context-459 0.70
ADE20K-150 0.73
ADE20K-847 0.57

(118K images), a validation set (5K images), and a test set
(41K images). In our experiments, we use the entire 118K
training set as the default training data.

ADE20K-150 Zhou, Zhao, Puig, Fidler, Barriuso and
Torralba (2017) is a large-scale scene understanding dataset

with 20K training images and 2K validation images which
contains a total of 150 classes.

ADE20K-847 Zhou et al. (2017) has the same set
of images as ADE20K-150 but includes a greater number
of annotated classes (847 classes). This dataset presents a
challenge for open-vocabulary semantic segmentation.

Pascal VOC Everingham and Winn (2011) consists
of 20 classes of semantic segmentation annotations. The
training set contains 1464 images, and the validation set
contains 1449 images. Following previous methods Cho
et al. (2023), we report PAS-20 using the standard 20 object
classes and also report the score for PAS-20𝑏, which defines
the “background” as additional classes.

Pascal Context-59 Mottaghi, Chen, Liu, Cho, Lee, Fi-
dler, Urtasun and Yuille (2014) is a dataset for seman-
tic understanding, comprising 5K training images and 5K
validation images. It includes a total of 59 most frequent
annotated classes.
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Table 2
Comparison with previous SOTA. The best-performing results are presented in bold. For a fair comparison, we utilize the mIoU
as the evaluation metric. All our results are trained with full COCO-Stuff Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár
and Zitnick (2014) dataset and tested on the validation datasets directly. Our method achieves the new state-of-the-art.

Methods VLM Training dataset Additional dataset A-847 PC-459 A-150 PC-59 PAS-20 PAS-20𝑏

SPNet Xian et al. (2019) - PASCAL VOC - - - - 24.3 18.3 -
ZS3Net Bucher et al. (2019) - PASCAL VOC - - - - 19.4 38.3 -
LSeg Li et al. (2022) ViT-B/32 PASCAL VOC-15 - - - - - 47.4 -
ZegFormer Ding, Xue, Xia and Dai (2022a) ViT-B/16 COCO-Stuff-156 - 4.9 9.1 16.9 42.8 86.2 62.7
ZegFormer† Ding et al. (2022a) ViT-B/16 COCO-Stuff - 5.6 10.4 18.0 45.5 89.5 65.5
ZSseg Xu et al. (2022) ViT-B/16 COCO-Stuff - 7.0 - 20.5 47.7 88.4 -
OpenSeg Ghiasi et al. (2022) ALIGN COCO Panoptic Localized Narrative 4.4 7.9 17.5 40.1 - 63.8
OVSeg Liang et al. (2022) ViT-B/16 COCO-Stuff COCO Caption 7.1 11.0 24.8 53.3 92.6 -
CAT Cho, Shin, Hong, An, Lee, Arnab, Seo and Kim (2023) ViT-B/16 COCO-Stuff - 8.4 16.6 27.2 57.5 93.7 78.3
LSeg Li et al. (2022) ViT-B/32 PASCAL VOC-15 - - - - - 52.3 -
OVSeg Liang et al. (2022) ViT-L/14 COCO-Stuff COCO Caption 9.0 12.4 29.6 55.7 94.5 -
SAN Xu, Zhang, Wei, Hu and Bai (2023) ViT-L/14 COCO-Stuff - 12.4 15.7 32.1 57.7 94.6 -
CAT Cho et al. (2023) ViT-L/14 COCO-Stuff - 10.8 20.4 31.5 62.0 96.6 81.8
CAT Cho et al. (2023) ViT-H/14 COCO-Stuff - 12.4 20.1 34.4 61.2 96.7 80.2
CAT Cho et al. (2023) ViT-G/14 COCO-Stuff - 13.3 21.4 36.2 61.5 97.1 81.4
Ours ViT-L/14 COCO-Stuff - 11.6 20.6 31.8 62.1 96.6 82.0
Ours ViT-H/14 COCO-Stuff - 13.1 20.1 34.5 61.3 96.7 80.1
Ours ViT-G/14 COCO-Stuff - 14.4 21.6 36.3 61.7 97.2 81.2

Table 3
Ablation studies on each proposed component. The 𝐿𝑝 denotes the proposed physically regularized loss, and the 𝐿𝑠𝑎𝑐 denotes
the weighted patched alignment loss. Our baseline is CAT Cho et al. (2023) For a fair comparison, we utilize the mIoU as the
evaluation metric. All results are trained with full COCO-Stuff Lin et al. (2014) dataset and tested on the validation datasets
directly.

Methods A-847 PC-459 A-150 PC-59 PAS-20 PAS-20𝑏

Baseline 10.8 20.4 31.5 62.0 96.6 81.8
Baseline + 𝐿𝑝 11.5 20.5 31.6 62.2 96.6 82.0
Baseline + 𝐿𝑝 + 𝐿𝑠𝑎𝑐 11.6 20.6 31.8 62.1 96.6 82.0

Pascal Context-459 Mottaghi et al. (2014) shares the
same images as Pascal Context-59 but includes a larger num-
ber of annotated classes (459 classes). This dataset is also
widely used for open-vocabulary semantic segmentation.

Dataset Analysis: To analyze the capability of the
trained model on the open set task, following the SAN Xu
et al. (2023), we evaluate the relationship between the
evaluated datasets to the trained dataset by calculating their
similarity using the Hausdorff Distance. To compute the
pairwise similarity, we extract the text embeddings of each
concept using the pre-trained CLIP text encoder (ViT-L/14)
and compute the cosine similarity. The results are presented

in Table 1. Among the five validation datasets, Pascal VOC
exhibits a high similarity score of up to 0.9, indicating
their suitability for assessing the in-domain open-vocabulary
ability in terms of visual categories. Conversely, Pascal
Context-459, ADE20K-150, and ADE20K-847 yield lower
similarity scores, suggesting their effectiveness in evaluating
the cross-domain open-vocabulary ability, which is more
challenging.

Table 4
Ablation studies on different kinds of physical information as regularization. the PL denotes the proposed physically regularized
loss. For a fair comparison, we utilize the mIoU as the evaluation metric. All results are trained with full COCO-Stuff Lin et al.
(2014) dataset and test on the validation datasets directly.

𝐿𝑠𝑎𝑐 SIFT Superpoint Canny EdgeGT A-847 PC-459 A-150 PC-59 PAS-20 PAS-20𝑏

✓ 10.8 20.4 31.5 62.0 96.6 81.8
✓ ✓ 11.6 20.6 31.8 62.1 96.6 82.0
✓ ✓ 11.7 20.6 31.6 62.1 96.6 82.1
✓ ✓ 11.5 20.7 31.9 62.2 96.6 81.9
✓ ✓ 11.6 20.5 31.7 62.3 96.6 81.9
✓ ✓ ✓ 11.7 20.8 31.8 62.0 96.8 82.0
✓ ✓ ✓ 11.5 20.8 31.6 62.1 96.6 82.0
✓ ✓ ✓ ✓ ✓ 11.6 20.7 31.7 62.2 96.8 82.1
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Figure 5: Segmentation Results on the ADE20K-847 Validation Dataset: The figures display segmentation masks for only the
annotated categories within each image. Notably, these results demonstrate our model’s capability to identify and locate objects
across categories and datasets that were neither included in training nor previously encountered. This underscores the robustness
and adaptability of our segmentation approach, effectively handling unseen categories and enhancing generalization.

4.1.2. Evaluation Metric
Following previous methods, we utilize the mean of

class-wise intersection over union (mIoU) to validate the
performance of our models.

4.2. Comparison with Previous Methods
4.2.1. Training Setting

All models are trained using the training set from the
COCO Stuff dataset. Experimental settings such as the initial
learning rate, weight decay, batch size, training iterations,
and optimizers align with baselines. Following training,
model evaluation is conducted directly on the validation
datasets. Specifically, our implementation is based on Py-
Torch and utilizes Detectron2. We employ the AdamW
optimizer with a learning rate of 2 × 10−4 for our model
and 2 × 10−6 for CLIP, setting the weight decay to 10−4.
The batch size is configured to 4, utilizing 4 NVIDIA RTX
A5000 GPUs for efficient training.

To clarify, our training process is end-to-end without
employing pre-training strategies like contrastive learning.

Instead, we integrate the novel loss function as a regular-
ization term for open-vocabulary segmentation, a choice
that aligns with our objective to directly optimize for the
task at hand. This decision was made based on our intent
to explore the effectiveness of the proposed loss within a
straightforward and focused training framework.

4.2.2. Overall Comparison
Table 2 presents a comprehensive comparison of our

method with the state-of-the-art approaches. Notably, all
the methods utilize the CLIP ViT pre-trained models and
are trained on the COCO Stuff dataset or larger datasets.
Our method outperforms these approaches, demonstrating a
substantial improvement for different visual-language mod-
els (VLM), including CLIP ViT-L/14, and ViT-H/14. Re-
markably, the performance gains are most pronounced on
the ADE-847 dataset. As indicated in Table 1, ADE-847
exhibits fewer classes similar to those in the training dataset
COCO Stuff, which is the most challenging validate dataset.
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Baseline Ours Baseline Ours
Figure 6: Comparison of Segmentation Results on the ADE20K Validation Dataset: Our method demonstrates improved
segmentation results compared to the baseline.

This shows the superior open-vocabulary recognition capa-
bility of our approach.

4.3. Ablation Studies
The effectiveness of each component As demonstrated

in Table 3, we conduct ablation experiments to illustrate the
effectiveness of our proposed losses. Each component con-
tributes to the improvement over the baseline. Combining
these losses (𝐿𝑝 and 𝐿𝑠𝑎𝑐), our method further enhances the
baseline.
Different kinds of physical regularization To comprehen-
sively validate the effectiveness of various low-level struc-
tural constraints in regularizing open vocabulary segmen-
tation tasks, we conducted an ablation analysis involving
the integration of edges and keypoints as distinct forms of
physical structure in the regularization process.

For edge extraction, we explored two methodologies.
First, we employed the Canny edge detection algorithm Canny
(1986), a widely recognized technique in computer vision.
Acknowledging potential limitations as Canny Edge may
not be accurate, we adopted an alternative strategy for
edge computation in the second method, generating ground
truth edges using labels from semantic masks (EdgeGT).
Moving beyond edge-based regularization, we investigated
the utility of keypoints as a regularization mechanism. We
employed two methodologies for computing keypoints as
pseudo ground truths: the scale-invariant feature transform
(SIFT) Lindeberg (2012) and Superpoint DeTone, Mal-
isiewicz and Rabinovich (2018). Table 4 shows the re-
sults, demonstrating consistent and comparable performance
across all types of physical structural regularization.

4.4. Result Visualization
As illustrated in Figure 5, we show our segmentation

results on the ADE20K validation dataset. Notably, our
method achieves precise object localization even without

prior training on this dataset or access to specific category
information.

Furthermore, we present a visual comparison of seg-
mentation results between our method and the baseline in
Figure 6. Our approach not only demonstrates enhanced
segmentation accuracy but also reflects the robustness of our
proposed method.

5. Conclusion
In this paper, we address the challenge of applying the

CLIP model to open-vocabulary semantic segmentation.
The CLIP model, trained using image-level contrastive
learning, lacks the pixel-level recognition capability re-
quired for segmentation tasks. We propose a novel approach
by dividing each image into patches and aligning them with
text classification. This weighted patch-aligned contrastive
loss enables more accurate segmentation results by effec-
tively capturing distinctions between different object classes.
Additionally, to mitigate bias issues in the base training
datasets, we introduce a physical structure regularized loss.
Our method shows promise in improving segmentation
performance and achieves new state-of-the-art on the open
vocabulary segmentation tasks.
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