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ABSTRACT

Thermal infrared images (TIIs) can be distorted by multi-
ple factors, resulting in noise, low contrast, limited dynamic
range, and fuzziness, which greatly impede their usefulness.
It is crucial to evaluate the quality of TIIs. Unfortunately,
there have been very few attempts to study this problem. In
this study, we collected 1,000 authentically distorted TIIs
using thermal infrared acquisition equipment and conducted
strict subjective experiments to obtain a thermal infrared im-
age quality assessment (IQA) database. Each image’s quality
score was obtained under strict scoring rules. Finally, we
investigated the feasibility of several no-reference (NR) IQA
methods in quality assessment of TIIs. We found that exist-
ing NR-IQA methods achieve ordinary performance in such
a task, and there is an urgent need to develop a specific IQA
methods for TIIs. The findings together with the constructed
database are expected to pave the way for the development of
more advanced IQA methods for further development of this
field.

Index Terms— Thermal infrared images, image quality
assessment, subjective assessment, no reference.

1. INTRODUCTION

Nowadays, the thermal infrared imaging technology is
gradually spread to more areas, including but not limited to,
the civil aviation, security, frontier defense, industry, build-
ing, transportation, and automation [1, 2]. Thermal infrared
imaging is a technology that captures images of objects based
on their emission, reflection, conduction, and radiation of
infrared energy. However, due to the influence of equip-
ment, environment and other factors, it inevitably causes
image distortions, reduces the perceptual quality, and brings
obstacles to the processing and subsequent applications of
thermal infrared images (TIIs) [3–5]. Recently, proposing
reliable quality assessment methods for TIIs has become an
urgent requirement with the popularity of thermal infrared
equipment.

Image quality assessment (IQA) is an essential task in
computer vision and related fields because it plays a crucial

role in various applications [6–8]. Generally, it can be divided
into the subjective method and objective method [9–11]. The
former evaluates the image quality by many qualified ob-
servers through the strict scoring rules and experiment pro-
tocols. It is often regarded as the golden standard of the
objective method. Currently, the most common scoring rules
for Natural Scene Images (NSIs) are based on a continuous
impairment scale or five-grade rating scale, where the scale
key points correspond to the quality level of ’Excellent’,
’Good’, ’Fair’, ’Poor’, and ’Bad’. Compared to NSIs, TIIs
have several special characteristics, e.g., high background
noise, low resolution, and low contrast, making the quality
assessment task more challenging [12–14]. This motivates
us to pay specific attention to the quality assessment of TIIs.
However, despite the increasing research interest in IQA,
research on the quality assessment of TIIs is still lacking.

In this study, we discuss the subjective quality assessment
of TIIs and construct a new database, named TIIQAD. To
keep the database consistent with the actual application, we
collected 1,000 authentically distorted TIIs under different
conditions. Considering the difference between TIIs and
NSIs, we changed the scoring descriptions in the five-grade
rating scale based on the physical principles and thermal
characteristics of TIIs, paying more attention to informa-
tion amount, contrast, and blur. The quality of each image
is determined by the mean opinion score through rigorous
subjective experiment and data processing. Based on the col-
lected TIIQAD, we further investigate whether mainstream
no-reference (NR) IQA methods designed for NSIs are com-
petent for the quality assessment task of TIIs. Overall, the
contributions of this paper are summarized as follows:

• We construct a new real-world database, named TI-
IQAD, for promoting the development of quality as-
sessment of TIIs. The constructed TIIQAD includes
1,000 authentically distorted TIIs captured under dif-
ferent conditions, e.g., indoor/outdoor scenes and
sunny/cloudy weather, using the thermal infrared ac-
quisition equipment. Each image has a mean opinion
score (MOS) obtained through strict subject experi-
ments by 20 observers. The database will be released



at https://github.com/cheunglaihip.

• We investigated the performance of mainstream NR-
IQA methods on TIIQAD. Experimental results showed
that mainstream NR-IQA methods are not very suitable
for quality assessment of TIIs because TIIs usually
contain complex distortions caused by factors from
equipment and environmental conditions. In addition,
methods designed for images with the single distortion
generally have poorer performance compared to those
designed for images with multiple distortions.

2. THE THERMAL INFRARED IMAGE QUALITY
ASSESSMENT DATABASE

2.1. Image Collection

Fig. 1 shows the image acquisition platform. Specifi-
cally, we used the FTII640 camera (a TII camera produced
by Yantai IRay Technology Co., Ltd.) to collect TIIs. The
captured TIIs were initially stored in the RAW format. We
used a laptop computer to display the collected images in real
time for better understanding of the captured scene during the
image acquisition process. For the convenience of subsequent
tasks, we converted the RAW data to the BMP format while
maintaining the original resolution of 640× 512 pixels using
the software provided by Yantai IRay Technology Co., Ltd.
To ensure the scene diversity, we specifically eliminated TIIs
with similar content and ultimately selected 1,000 authenti-
cally distorted TIIs.

During image collection, we mainly collected images un-
der representative conditions in view of the practical appli-
cability. Fig. 2 shows some examples of the captured TIIs,
in which each row contains images collected in indoors, out-
doors, sunny day, and cloudy day, respectively. As can be
seen, the contrast of TIIs between indoors and cloudy day is
generally lower than that between outdoors and sunny day.
There are two potential factors that lead to this phenomenon.
On the one hand, the temperature difference between indoor
objects is relatively small, and the thermal sensitivity of the
infrared equipment is not enough to detect subtle temperature
variations. On the other hand, on cloudy day, the presence
of most air acts as a hindrance to infrared radiation, which
weakens the energy reflection of the objects.

2.2. Analysis of Image Distortions

Affected by multiple factors, acquiring high-quality TIIs
is a challenging task, and the captured TIIs are usually with
complex distortions. For instance, thermal equilibrium of ob-
jects, long wavelength of radiation, and atmospheric attenu-
ation can cause the strong spatial correlation, low contrast,
and blur of TIIs. Random interference from the external envi-
ronment and the imperfection of the thermal infrared imaging

Fig. 1. TII acquisition platform.

system could also lead to various types of noise in TIIs. Fig.
2 illustrates some examples with representative distortions.

• Noise: Noise in TIIs refers to random changes in
brightness. The presence of noise reduces the defini-
tion and contrast of the image. In some cases, noise
may cause incorrect recognition or misjudgment of
targets.

• Blur: The primary causes of blur are improper settings
of acquisition parameters, movement of equipment or
targets, and issues of the optical lens. Blur can weaken
the edge and detail information of TIIs, making the im-
age unclear.

• Low Contrast: TIIs can suffer from low contrast dis-
tortion due to harsh environments, insufficient or un-
even illumination, and low infrared radiation intensity
of the object itself. Low contrast is not conducive to
object recognition.

• Other Distortions: Apart from the distortions men-
tioned above, other distortions also occur during the TII
collection. For instance, the limited thermal sensitivity
can limit the dynamic range of TIIs, which affects ther-
mal analysis. Reflection, refraction, and scattering can
lead to information loss, which may affect the accurate
detection of object surface temperature.

3. SUBJECTIVE QUALITY ASSESSMENT OF
THERMAL INFRARED IMAGES

3.1. Subjective Test

Twenty observers (with normal or corrected-to-normal vi-
sion, 21-26 years) participated in the subjective experiment.
During the experiment, observers sat in front of a Dell 27-
inch screen, which has a resolution of 1920× 1080 pixels, in



Fig. 2. Examples of TIIs in the TIIQAD.

a normal-lighting laboratory. A flexible viewing distance was
set by considering practical applications, allowing observers
to view the images from a distance of one to three times the
image height [15].

The subjective experiment included two stages: a train-
ing stage and a testing stage. During the training stage, ob-
servers were required to understand the purpose, the opera-
tion process, as well as the scoring rules of the experiment.
Before the formal testing phase, observers had to obtain 70%
or higher accuracy on some prepared samples. It’s important
to note that these samples were not included in the test phase
and the formal database. During the testing stage, the single
stimulus method recommended by the international telecom-
munication union [16] was used. As there were no reference
pairs for each test image, a five-level assessment scale was
adopted, as shown in Table 1. The rating score was automat-
ically record by a subjective scoring software, as shown in
Fig. 3. Observers could click on the ”Next” button to con-
tinue rating after completing the rating of the current image.
To prevent visual fatigue and ensure the accuracy of experi-
mental results, observers were encouraged to take breaks ev-
ery 10 minutes. All images are presented randomly without
repetition.

Table 1. Scoring rules for quality assessment of TIIs.

Ratings Descriptions

1 Severely annoying, informationless.
2 Annoying, less information, low contrast.
3 Slightly annoying, little impaired information.
4 Distortion perceptible, full of information.
5 Distortion imperceptible, full of information.

3.2. Subjective data processing

Since the distortions of TIIs are complex, the observers
may have distinct subjective rating scores due to their differ-
ent interpretations of the task. Therefore, it is necessary to
process subjective score data before determining the quality
score of each image. For this purpose, we adopted the method
recommended by SS in ITU-R BT.500 [16] to eliminate out-
liers and process the subjective score data, which improved
the reliability of the obtained quality scores. After analysis,
3 out of 20 subjects were rejected. Then, a linear mapping
function was used to scale the Z-Score to the range [1, 5]. Let
rp,q denote the raw scores provided by the q-th subject on the
p-th images, the Z-Scores are computed from the raw scores
as follows:

Zp,q =
rp,q − µq

σq
, (1)

where µq = 1
Nq

∑Nq

p=1 rp,q , σq =
√

1
Nq−1

∑Nq

p=1(rp,q − µq)2

and Nq is number of imgaes rated by the q-th subject. The
MOS value for the p-th image was then calculated using this
scaled score:

Mp =
1

Q

Q∑
q=1

Zp,q, (2)

where Q = 17 represents the number of remaining valid sub-
jects after eliminating outliers.

Fig. 3. Graphic user interface of the subjective test.
Fig. 4 presents the distribution of MOSs. As can be seen,

TIIQAD covers a wide range of image quality levels, from
extremely poor to satisfactory, and shows good differentia-
tion across different quality levels. Notably, there are rela-
tively few images with high scores, with the majority of im-
ages concentrated in the middle grades. This is because it’s
hard to obtain perfect image during the image collection pro-
cess, due to various distortions. Furthermore, observers may
be hesitant to rate an image too low or too high during the
image observation process.



Fig. 4. The distribution of MOS values of TIIQAD.

4. PERFORMANCE COMPARISON OF
MAINSTREAM NR-IQA METHODS

In this section, we investigate the feasibility of main-
stream NR-IQA methods in tackling the quality assessment
task of TIIs on the proposed TIIQAD. We first introduce the
experimental settings, including the compared methods and
the evaluation metrics, and then report the experiments results
as well as the associated discussions.

4.1. Experimental Settings

Due to the limited number of objective methods designed
specifically for TIIs, we select eight well-known NR-IQA
methods designed for NSIs to investigate their feasibility in
assessing the quality of TIIs. These objective methods can be
classified into three categories according to their scope. The
first category includes quality assessment methods designed
specifically for contrast change, such as MDM [17] and NR-
CDIQA [18]. The second category includes quality assess-
ment methods designed for images with the synthetic distor-
tion, such as BRISQUE [19], BIQME [20], GM-LOG [21],
OG-IQA [22], and SSQE [23]. The last category includes a
quality assessment method, namely GWH-GLBP [24], pro-
posed for images with the authentic distortion.

To assess the performance of these NR- IQA methods,
we use four commonly used evaluation metrics: Pearson lin-
ear correlation coefficient (PLCC), Spearman rank correla-
tion coefficient (SRCC), Kendall rank correlation coefficient
(KRCC), and root mean square error (RMSE). Before calcu-
lating PLCC and RMSE, a non-linear fitting of the predicted
scores was necessary as recommended by the Video Quality
Expert Group [25]:

f(x) = κ1

[
1

2
− 1

eκ2(x−κ3) + 1

]
+ κ4 · x+ κ5, (3)

where x and f(x) are the predicted score obtained by an ob-
jective method and the corresponding subjective score, re-
spectively. ki is the parameter to be fitted using iterative least

squares estimation. Theoretically, higher values of SRCC,
KRCC, and PLCC, in contrast to RMSE, indicate a superior
performance of the tested objective method.

4.2. Experimental Results and Analysis

Table 2 presents the experimental results of eight objec-
tive methods, from which we have the following observa-
tions. Firstly, BRISQUE, GWH-GLBP, BIQME and GM-
LOG have SRCC and PLCC values over 0.85, and BRISQUE
shows the best performance with SRCC of 0.895 and PLCC
of 0.877. While these results are promising, there are still
large room for performance improvement in quality assess-
ment of TIIs. Secondly, all listed methods exhibit gener-
ally low KRCC values, ranging from 0.354 to 0.702. This
suggests that the predicted scores of these objective meth-
ods have weak correlation with subjective scores. Finally,
methods designed for images with the single distortion (e.g.,
NR-CDIQA and MDM) generally have poorer performance
compared to those designed for images with multiple distor-
tions (e.g., BRISQUE, BIQME, and GLBP). The above ob-
served phenomenon can be attributed to several possible rea-
sons. Firstly, TIIs often contain complex distortions that ap-
pear in a mixed way rather than a single occurrence. It is hard
to effectively characterize the complex distortions based on a
small number of features such as contrast and gradient may
not be adequate. Most objective methods have limited poten-
tial in expressing complex distortions. Secondly, methods that
consider multi-feature fusion and statistical features are more
conducive to characterizing the distortions in TIIs. Neverthe-
less, the extracted features are still unable to fully characterize
the complex distortions in TIIs. Thirdly, the scene content of
TIIs is varying, and these methods do not comprehensively
consider image complexity, and scene changes, which makes
it difficult for existing objective methods to understand the
real authentic distortions.

Table 2. Performance comparison of NR-IQA methods on
the proposed TIIQAD.

METHODS Evaluation metrics
PLCC SRCC KRCC RMSE

SSQE [23] 0.498 0.503 0.354 0.621
NR-CDIQA [18] 0.568 0.561 0.399 0.586
MDM [17] 0.644 0.608 0.438 0.544
OG-IQA [22] 0.852 0.822 0.640 0.372
GM-LOG [21] 0.887 0.854 0.676 0.328
GWH-GLBP [24] 0.892 0.871 0.694 0.322
BIQME [20] 0.890 0.868 0.695 0.323
BRISQUE [19] 0.895 0.877 0.702 0.316



5. CONCLUSION AND FUTURE WORKS

Thermal infrared technology enables non-contact, high-
efficiency, and high-precision thermal measurement and
imaging, with a wide range of applications in fields such
as industry, medicine, and security. However, the captured
TIIs are usually with complex distortions caused by multiple
factors. Filtering out low-quality TIIs can provide users with
more realistic images, improve work efficiency, help manu-
facturers optimize infrared equipment parameters. This paper
presents a preliminary discussion on the subjective quality
assessment of TIIs. Firstly, we constructed a quality assess-
ment database, which consists of 1,000 authentically distorted
TIIs and theirs associated MOSs, by strict subjective exper-
iments in a laboratory environment. We then investigated
the performance of eight mainstream NR-IQA methods on
this database. Experimental results show that these methods
are not very suitable for the quality assessment of TIIs. Fu-
ture works can start by analyzing and quantifying distortion
characteristics of TIIs, particularly those caused by acquisi-
tion equipment, operators, and harsh weather conditions, and
designing specific objective methods for TIIs.
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