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ABSTRACT

Images and videos often suffer from issues such as motion blur, video discontinuity, or rolling shutter
artifacts. Prior studies typically focus on designing specific algorithms to address individual issues.
In this paper, we highlight that these issues, albeit differently manifested, fundamentally stem from
sub-optimal exposure processes. With this insight, we propose a paradigm termed re-exposure, which
resolves the aforementioned issues by performing exposure simulation. Following this paradigm, we
design a new architecture, which constructs visual content representation from images and event cam-
era data, and performs exposure simulation in a controllable manner. Experiments demonstrate that,
using only a single model, the proposed architecture can effectively address multiple visual issues, in-
cluding motion blur, video discontinuity, and rolling shutter artifacts, even when these issues co-occur.

© 2024 Elsevier Ltd. All rights reserved.
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Fig. 1. The image re-exposure method adjusts the spatial-temporal domain
represented by the image to an expected states, which is able to address is-
sues including deblur, VFI, unrolling, and their combinations with a single
model.

1. Introduction1

An image is generated through an exposure process. The2

exposure process determines a portion of visual content within3
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a spatial-temporal domain, and the image can be regarded as 4

the representation of this portion of visual content. When the 5

amount of visual content exceeds the image’s representational 6

capacity or the spatial-temporal domain is distorted, the quality 7

of the image will degrade. 8

For instance, when the exposure period is too long or there is 9

too much motion, the spatial-temporal domain represented by 10

the image will contain an excessive amount of visual content, 11

resulting in an image exhibiting noticeable blur. In the case 12

of a rolling shutter that adopts a row-by-row readout scheme, 13

the represented spatial-temporal domain becomes tilted, lead- 14

ing to the distortion commonly referred to as the “jello effect”. 15

A video is a sequence of images that carries a stream of visual 16

content over a long period of time. If the framerate is low, there 17

are not enough images to carry the visual content, resulting in a 18

jerky and unstable effect. Furthermore, it is common for these 19

issues to co-occur, producing images or videos with complex 20

degradation. 21

To address these issues, methods for blur removal Zhang 22

et al. (2022); Kupyn et al. (2018); Nah et al. (2017a), rolling 23

shutter correction Liu et al. (2020); Zhong et al. (2021), and 24

video frame interpolation Zhang et al. (2022); Jiang et al. 25

(2018); Bao et al. (2019) have been explored. These meth- 26

ods deal with individual issues separately. When it comes to 27

the combination of these issues, these methods are typically ap- 28

plied in succession. 29
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However, since the spatial-temporal domain is determined30

by the exposure process, all aforementioned issues can be at-31

tributed to sub-optimal exposure. This suggests the possibility32

of a unified paradigm that can address all these issues. There-33

fore, from the perspective of exposure simulation, we propose34

a paradigm we refer to as re-exposure. This paradigm involves35

constructing representation of the visual content from sensor36

data, and simulating an optimal exposure process where the37

spatial-temporal domain represented by the image is in a de-38

sired state. As illustrated in Fig. 1, re-exposure is a flexible39

paradigm that is able to address all aforementioned problems40

and their combinations with a single model.41

Following the proposed paradigm, we designed our method,42

which is called neural image re-exposure (NIRE), as follows.43

First, we design a visual content constructor that builds a44

representation of visual content from images and event camera45

data. In this process, event cameras Lichtsteiner et al. (2008);46

Posch et al. (2011), also known as dynamic vision sensors, pro-47

duce a stream of records about brightness change in microsec-48

ond temporal resolution, complementing the temporal informa-49

tion of the degraded images.50

Following that, we simulate the exposure process as a suc-51

cession of adaptive information exchanges based on a stack52

of specially designed operation called temporalized attention.53

Through a manually specified time encoding called neural shut-54

ter, we can control the exposure process to a desired state.55

Akin to the film in a traditional camera, we design a struc-56

ture referred to as neural film as the carrier for visual content.57

The neural film together with the visual content representation58

goes through several rounds of attention-based information ex-59

change, retrieving the visual content specified by the neural60

shutter. By appropriately adjusting the neural shutter, we can61

manipulate the visual content of the resulting image, optimiz-62

ing it to suit various applications.63

Through the proposed architecture, we can address visual is-64

sues such as motion blur, video discontinuity, rolling shutter65

artifacts, and even their combinations, with a single, unified66

model.67

2. Related Works68

2.1. Motion Deblur69

Motion blur occurs when the object or camera moves at high70

speed during the exposure period. To deblur the images, some71

methods Ren et al. (2020); Kaufman and Fattal (2020) model72

make estimation about blur kernel first and conduct deconvo-73

lution with the estimated kernel. Some methods Nah et al.74

(2017a); Cho et al. (2021); Chen et al. (2022) adopt the encoder-75

decoder architectures to deblur images with neural network.76

Due to the complexity of blur patterns and lack of motion in-77

formation within the exposure period, the performance of these78

methods is still limited especially when it comes to scenes with79

complex motion.80

Benefiting from the rich temporal information with the81

events, event-based methods Pan et al. (2019); Jiang et al.82

(2020); Lin et al. (2020); Zhang and Yu (2022); Song et al.83

(2022); Xu et al. (2021) have achieved significant progress. Pan84

et al. Pan et al. (2019) proposed the Event-based Double Inte- 85

gral (EDI) model by exploring the relationship between events, 86

blurry images, and the latent sharp image to deblur the image by 87

optimizing an energy function. Considering the impact of noise 88

and the unknown threshold of events, some methods Jiang 89

et al. (2020); Lin et al. (2020); Zhang and Yu (2022) use deep 90

learning networks to predict the sharp image based on the same 91

principle. Song et al. Song et al. (2022) model the motion by 92

means of per-pixel parametric polynomials with a deep learning 93

model. REDNet et al. Xu et al. (2021) estimates the optical flow 94

with the event to supervise the deblurring model with blurry 95

consistency and photometric consistency. By investigating the 96

impact of light on event noise, Zhou et al. Zhou et al. (2021) 97

attempted to estimate the blur kernel with events to deblur im- 98

ages by deconvolution. Sun et al. Sun et al. (2022) proposed 99

a cross-modality channel-wise attention module to fuse event 100

features and image features at multiple levels. 101

2.2. Video Frame Interpolation 102

Most frame-only methods Jiang et al. (2018); Lee et al. 103

(2020); Bao et al. (2019); Huang et al. (2022) are based on 104

linear motion assumption. These methods estimate the opti- 105

cal flow according to the difference between two frames, and 106

linearly calculate the displacement from the key frames to the 107

target timestamp. Because of lack of motion information be- 108

tween frames. 109

Compared with frame-only interpolation, event-based inter- 110

polation methods are more effective due to the power of events 111

in motion modeling. This makes them competent for scenar- 112

ios with more complex motion patterns. Xu et al. Xu et al. 113

(2021) proposed to predict optical flow between output frames 114

to simulate nonlinear motion within exposure duration. He et 115

al. He et al. (2022) proposed an unsupervised event-assisted 116

video frame interpolation framework by cycling the predicted 117

intermediate frames in extra rounds of frame interpolation. 118

Tulyakov et al. Tulyakov et al. (2021) designed a frame interpo- 119

lation framework by combining a warping-based branch and a 120

synthesis-based branch to fully exploit the advantage of fusion 121

of frames and events. 122

2.3. Rolling Shutter Correction 123

Rolling shutter effect is caused by the row-by-row readout 124

scheme, in which each row of pixels is exposed at a different 125

time. Frame-only unrolling is mostly based on the motion flow 126

and linear motion assumption. Fan et al. Fan and Dai (2021); 127

Fan et al. (2022) proposed to estimate the motion field between 128

two adjacent input rolling shutter images, and predict the global 129

shutter image based on that. In SUNet Fan et al. (2021) and 130

DSUN Liu et al. (2020) pyramidal cost volume is computed to 131

predict motion field and global shutter image is predicted by 132

warping features of key frames based on that. Zhou et al. Zhou 133

et al. (2022) introduced the event data to the unrolling task, and 134

designed a two-branch structure which fully leverages informa- 135

tion with frames and events to correct the rolling shutter effect. 136
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Fig. 2. Overall pipeline. A multi-level representation of the visual content is constructed from the sensor data by the visual content constructor. Then,
together with the visual content, a multi-level neural film is fed into the exposure simulator. By specifying a desired neural shutter, a desired re-exposed
image can be produced.

2.4. Joint Tasks137

There have already been some efforts in dealing with multi-138

ple tasks simultaneously. Some methods Zhang and Yu (2022);139

Lin et al. (2020); Oh and Kim (2022) deal with image deblur140

and frame interpolation simultaneously. DeMFI Oh and Kim141

(2022) takes blurry key frames as input, deblurring the image142

with a flow-guided module and interpolating sharp frames with143

a recursive boosting module. Zhang et al. Zhang and Yu (2022)144

and Lin et al. Lin et al. (2020) unifid the image deblur and145

frame interpolation with the help of events. EVDI Zhang and146

Yu (2022) predicts sharp images of a given timestamp by lever-147

aging blurry images and corresponding events, which are then148

fused as interpolation results. Lin et al. Lin et al. (2020) pro-149

posed to use events to estimate the residuals for the sharp frame150

restoration, and the restored frames compose a video of higher151

framerate.152

Zhong et al. Zhong et al. (2021) and Zhou et al. Zhou et al.153

(2022) proposed methods to convert blurry rolling shutter im-154

ages into sharp global shutter images. JCD Zhong et al. (2021)155

joint address motion blur and rolling shutter effect with a bi-156

directional warping stream and a middle deblurring stream.157

EvUnroll Zhou et al. (2022) is an event-based method that de-158

blurs the blurry rolling shutter image first, then corrects the159

rolling shutter effects in a two-branch structure.160

It is worth noting that, although above methods address mul-161

tiple issues in a single model, they handle each aspect of the162

joint task with a corresponding module in a multi-stage man-163

ner. In this work, we propose a unified framework to deal with164

all shutter-related problems. By re-exposing the captured im-165

age with a desired shutter, all aspects of the joint task can be166

addressed in a unified way.167

3. Re-exposure Paradigm168

In this section, we derive a symbolic expression to illustrate169

the re-exposure paradigm.170

The re-exposure paradigm is derived from the relationship171

between the visual content, the spatial-temporal domain de-172

termined by the exposure process, and the resulting image.173

For an image I(x, y), the pixel at (x, y) is determined by in-174

tegrating the visual content V(x, y, t) over the exposure period175

[ta(x, y), tb(x, y)]. Mathematically, this can be expressed as: 176

I(x, y) =
∫ tb(x,y)

ta(x,y)
V(x, y, t) dt, (1)

It is worth noting that the exposure period [ta(x, y), tb(x, y)] may 177

vary with the position (x, y). This flexibility is to accommodate 178

scenarios such as the rolling shutter camera, where the exposure 179

period varies across different positions. 180

It can be observed that each image represents visual content 181

within a certain spatial-temporal domain, which can be denoted 182

as Ω = [0,W] × [0,H] × [ta(x, y), tb(x, y)]. By introducing a 183

shutter function corresponding to the spatial-temporal domain, 184

we can decouple an image into the visual content and a shutter 185

function, leading to the equation as follows: 186

I(x, y) =
∫ T

0
V(x, y, t) S (x, y, t) dt, (2)

Here, S (·) represents the shutter function, defined as: 187

S (x, y, t) = 1t>0(t − ta(x, y)) − 1t>0(t − tb(x, y)),
s.t. 0 < ta(x, y) < tb(x, y) < T,

(3)

where 1t>0(·) is the unit step function. Notice the integral limits 188

have been extended to [0,T ] which encompasses Ω, indicat- 189

ing the visual content of interest distributes within a larger time 190

span than any shutter function. 191

Under this framework, different types of images correspond 192

to different shutter functions. For example, a global shutter 193

image corresponds to a shutter function with ta(x, y) = t1 and 194

tb(x, y) = t2, where t1 and t2 are constant for all position. An 195

image captured by a rolling shutter camera corresponds to a 196

shutter function with ta(x, y) = t1 + αy and tb(x, y) = t2 + αy, 197

where α represents the readout delay between adjacent rows. 198

And for the blurry image, |ta(x, y) − tb(x, y)| is typically large. 199

However, there remains an issue: the overall intensity of 200

I(x, y) is positively related to |ta(x, y) − tb(x, y)|—the smaller it 201

is, the darker the resulting image will be. In particular, for an 202

image representing a specific moment, |ta(x, y) − tb(x, y)| = 0 203

will lead to an entirely black image. 204

To address this problem, we introduce a normalized shutter 205

function to better reflect the relationship. 206

S̄ (x, y, t) =
S (x, y, t)
|S (x, y, t)|

, (4)
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Fig. 3. Illustration of the visual content constructor. It first extracts features from events and images, produces a set of multi-level feature pyramids. The
feature pyrmaids are then processed by temporalized attention and feature enhancement, resulting in a multi-level representation of visual content.

In particular, when |ta(x, y)−tb(x, y)| = 0 and ta(x, y) = tb(x, y) =207

t0, where t0 is a constant timestamp, we define S̄ (x, y, t) = δ(t −208

t0). We then obtain the following exposure formula:209

I(x, y) =
∫ T

0
V(x, y, t) S̄ (x, y, t) dt, (5)

Now, we express the relationship between the visual content,210

the shutter function, and the resulting image in an exposure pro-211

cess. According to Eq. 5, given the visual content and the shut-212

ter function, we can derive the corresponding image, which is213

the core of the re-exposure paradigm. For any specific task, we214

can specify the shutter function on the requirement to address215

corresponding visual issues.216

Following the re-exposure paradigm, we expect to approxi-217

mate the relationship reflected by Eq. 5 with a neural network,218

which can be abstracted as:219

IΩ|V = f (F(V),Ω) (6)

Here, V = {V(x, y, t)|(x, y, t) ∈ [0,H] × [0,W] × [0,T ]} can220

be regarded as a tensor sampled from V(x, y, t), which serves221

as the input of the neural network. IΩ|V = {I(x, y)|(x, y) ∈222

[0,H] × [0,W]} is the image corresponding to the given visual223

content and shutter function. F(·) serves as the feature extrac-224

tor, mapping the visual content to the feature domain, while f (·)225

simulates the exposure process, retrieving a subset of the visual226

content to produce the desired images.227

However, in practical applications, V(x, y, t) is not initially228

provided, and the given images Î are typically degraded. There-229

fore, we need to construct the visual content representation230

from the sensor data. Considering the degradation of Î, we231

incorporate event camera data E = {(x, y, p, t)|t ∈ [0,T ]} as232

a supplement, which is a stream of records about brightness233

change in microsecond temporal resolution. In this way, we234

can approximate the visual content V in feature domain with235

the events E and the given degraded image Î:236

F(V) = g(Î, E) (7)

Finally, we derive the following expression representing our237

method:238

IΩ|Î,E = f (g(Î, E),Ω) (8)

This suggests that given degraded images Î and a chunk of239

events E, we can obtain desired image by manipulating the240

spatial-temporal domain Ω.241

4. Method 242

In this section, we approximate Eq. 8 with a neural network, 243

which is an architecture we term Neural Image Re-Exposure 244

(NIRE for short). The overall architecture is shown in Fig. 2. 245

NIRE first constructs a visual content representation from the 246

sensor data, including images and events. It then simulates the 247

exposure process under the control of a neural shutter mecha- 248

nism. The neural film retrieves the visual content specified by 249

the neural shutter in this process, producing an image with de- 250

sired content and quality. 251

4.1. Feature Extraction 252

As shown in Fig. 3, to obtain the visual content representa- 253

tion from the degraded image Î and events E, the visual content 254

constructor first extract their features respectively. 255

To process events with convolutional neural network, we split 256

the events E into M segments by time. Each segment is con- 257

verted to a voxel grid Zhu et al. (2018) with B bins, which 258

is fed into a bi-directional LSTM Hochreiter and Schmidhu- 259

ber (1997), obtaining M feature pyramids, {El
1,E

l
2, · · · ,E

l
M}

L
l=1, 260

with each feature pyramid El
i ∈ RCl×

H
2l−1 ×

W
2l−1 and L is the total 261

number of levels, and Cl is the number of channels of the l-th 262

level. 263

As for the degraded images, each of them is processed by 264

a fully convolutional multi-scale encoder, producing a feature 265

pyramid Il
i ∈ R

Cl×
H

2l−1 ×
W

2l−1 , composing a set of feature pyrmids 266

{Il
1, · · · ,I

l
N}

L
l=1. Here the number of images N depends on the 267

task, e.g.N = 2 for the VFI task and N = 1 for the image deblur 268

task. 269

Through the feature extraction process, we can obtain a set of 270

feature pyramids {El
1,E

l
2, · · · ,E

l
M ,I

l
1, · · · ,I

l
N}

L
l=1, which will 271

be used in the construction of visual content representation (to 272

be illustrated in Sec. 4.3). 273

4.2. Temporalized Attention 274

Before we proceed to the construction of the visual content 275

representation, we need to introduce an operation termed as 276

temporalized attention, which plays a critical role in both the 277

construction of the visual content representation and in the ex- 278

posure simulation process. 279

It should be noted that each extracted feature pyramid corre- 280

sponds to specific spatial-temporal domains. To pinpoint their 281
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spatial-temporal position accurately and process their relation-282

ships, we have designed the temporalized attention.283

Following the standard vision transformer Dosovitskiy et al.284

(2021), the feature tokens are initially projected to d-dimension285

queries Q, keys K and values V with three linear layers fQ, fK ,286

and fV respectively, as illustrated in Eq. 9.287

[Q,K,V] = [ fQ(Z), fK(Z), fV (Z)] (9)

Different from vision transformer Dosovitskiy et al. (2021), the288

proposed operation works with our specially designed time-289

related positional encodings. For a timestamp t, we can encode290

it into a sinusoidal positional encoding:291

γ(t) =
(
sin
(
20πt
)
, cos
(
20πt
)
, · · · , sin

(
2K−1πt

)
, cos
(
2K−1πt

))
(10)

where t ∈ [0, 1] represents a normalized timestamp, with t =292

0 and t = 1 indicating the temporal boundaries of the visual293

content of interest.294

By concatenating the encodings of the start and end times-295

tamps of a certain range, we can describe the time range with:296

T (ta, tb) = [γ(ta(x, y)), γ(tb(x, y))]. (11)

Then, the encodings are also projected to d-dimension by a lin-297

ear layer fT . And we can obtain the time-aware queries Q̃ and298

keys K̃ through the following temporalize operation299

Q̃ = Q + fT (T ), K̃ = K + fT (T ). (12)

Ultimately, the temporalized attention can be denoted as:300

Attention(Q̃, K̃,V) = so f tmax(Q̃K̃T /
√

d)V. (13)

Following vision transformer Dosovitskiy et al. (2021), tempor-301

lizaed attention adopts the multi-head design, and the usage of302

LayerNorm and FFN are kept unchanged.303
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Fig. 4. Illustration of the temporalized attention module.
As shown in Fig. 4, temporalized attention takes n feature304

maps at a certain level as input, resulting in n feature maps at305

the same level, where n is the total number of the feature maps306

1. To mitigate the computational burden, the feature maps are307

divided into non-overlapping r × r windows, and the attention308

operation is applied to the n× r × r tokens within each window.309

1n = N + M for visual content representation, where N and M are the num-
bers of event and image based feature maps respectively; n = N + M + 1 for
the extend visual content representation, where the additional one feature map
is the neural film.
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Fig. 5. Illustration of the feature enhancement module. The l-th feature
level is fused with the upsampled (l + 1)-th level by addition, and the fused
feature is processed by a deformable convolution.

Following each temporalized attention, we apply a feature 310

enhancement module to promote the interaction across different 311

feature levels and windows. As shown in Fig. 5, it fuses the fea- 312

tures with their coarser level by upsampling and addition, and 313

processes the fused features with a deformable convolution Dai 314

et al. (2017) to get the enhanced feature. 315

4.3. Visual Content Representation 316

As shown in Fig. 3, a set of feature pyramids is obtained 317

after the feature extraction. We intend to unify these features 318

with temporalized attention to represent the visual content. 319

Notice that each token in the temporalized attention requires 320

a time-related positional encoding to pinpoint its temporal posi- 321

tion. For the tokens originating from image features, their time 322

encodings encode the start and end timestamps of their expo- 323

sure period. For the tokens derived from event features, their 324

time encodings represent the start and end timestamps of their 325

corresponding event segments. After applying temporalized at- 326

tention and feature enhancement, the set of feature pyramids 327

interact with each other, producing an updated feature pyramid 328

set denoted as {Êl
1, Ê

l
2, · · · , Ê

l
M , Î

l
1, · · · , Î

l
N}

L
l=1, among which 329

each feature pyramid represents part of the whole visual con- 330

tent within a certain spatial-temporal domain. 331

4.4. Neural Film, Neural Shutter, and Exposure Simulation 332

To retrieve the visual content of a certain spatial-temporal 333

domain from the whole visual content representation, we design 334

structures termed neural film and neural shutter. 335

The neural film serves as the carrier of visual content, akin 336

to the film in a camera. A neural film is a predefined multi- 337

level feature pyramid, each level is initialized by replicating a 338

learnable vector throughout spatial dimensions. Symbolically, 339

the neural film can be denoted as {Xl
0}

L
l=1, where each level 340

Xl
0 ∈ RCl×

H
2l−1 ×

W
2l−1 has the same shape as the feature levels in 341

the visual content representation. 342

The neural shutter is a manually specified time encoding, pin- 343

pointing a spatial-temporal domain whose visual content is ex- 344

pected to be represented by the resulting image. In the exposure 345

simulation, the neural shutter serves as the positional encoding 346

for the neural film in the temporalized attention. 347

In the exposure simulation, we append the neural 348

film to the feature pyramid set representing visual con- 349

tent, obtaining an extended representation denoted as 350
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{Êl
1, Ê

l
2, · · · , Ê

l
M , Î

l
1, · · · , Î

l
N ,X

l
0}

L
l=1. We feed the extended rep-351

resentation to the temporalized attention, where neural film352

retrieves the visual content from the spatial-temporal domain353

specified by the neural shutter, resulting in the exposed film354

which is a feature pyramid encoding our desired image. The ex-355

posed neural film is then sent to a convolutional decoder level356

by level in a top-down manner similar to the FPN Lin et al.357

(2016) structure, where each feature level is processed by con-358

volutional layers and upsampled to fuse with a finer level. Fi-359

nally, the finest feature level is decoded into a normalized sRGB360

image that retains the desired content and meets the standard of361

quality that we require.362

5. Experiments363

Since the proposed NIRE method is able to deal with several364

image/video quality issues within a unified framework, we eval-365

uate it on multiple tasks including image deblur, video frame366

interpolation (VFI), rolling shutter (RS) correction, and jointly367

deblurring and frame interpolation.368

5.1. Datasets369

Two datasets, GoPro Nah et al. (2017b) and Gev-RS Zhou370

et al. (2022), are used for training and quantitative evaluation371

in our experiments. GoPro Nah et al. (2017b) is a dataset con-372

sisting of sequences shot by a GoPro camera with a frame rate373

of 240 FPS and a resolution of 1,280×720. It can provide train-374

ing and testing samples for tasks including image deblur Sun375

et al. (2022) Kupyn et al. (2018) Tao et al. (2018), frame in-376

terpolation Tulyakov et al. (2021) Bao et al. (2019) Jiang et al.377

(2018), and jointly deblurring and frame interpolation Oh and378

Kim (2022) Jin et al. (2019). Gev-RS Zhou et al. (2022) is a379

dataset collected for event-base rolling shutter correction. It is380

composed of 5,700 FPS video sequences recorded by Phantom381

VEO 640 high-speed camera such that high-quality RS images382

and event streams can be simulated. For each task, we follow383

its common evaluation protocol for fair comparison.384

5.2. Training Strategy385

In the tasks of interest, the degraded images for training are386

synthesized, while the original high quality images serve as387

the groundtruths. For example, a blurry image is synthesized388

through averaging several sharp frames, a low-framerate video389

is synthesized by subsampled high-framerate ones, a rolling390

shutter image is created by composing scanlines from a se-391

ries of frames. And considering the scarce of calibrated events392

and images, we adopt the widely used event simulator Hu et al.393

(2021a,b) for generating the events.394

NIRE takes arbitrary types of low-quality images/frames and395

events as inputs, while original, high-quality images/frames396

serve as the ground truths. In the forward pass, we first feed397

the degraded image of random type (e.g. blurry image, sharp398

image, RS image, blurry RS image, etc.) accompanied with a399

segment of events that temporally encompasses the degraded400

image Here ’temporally encompass’ suggests that the temporal401

range of the events should exceed that of the given image. Then402

we set the neural shutter to encode the timestamp of an avail- 403

able ground truth 2. This instructs NIRE to predict an image 404

similar to the given ground truth as much as possible, therefore 405

the output image is then compared with the ground truth with a 406

combination of Charbonnier loss Charbonnier et al. (1994) and 407

perceptual loss Johnson et al. (2016), providing supervision in 408

the backward pass. During training, the input images are ran- 409

domly cropped into 128 × 128 patches, and we train our model 410

for 60,000 iterations with a batch size of 32 on a Tesla A100 411

GPU. 412

5.3. Deblur 413

Following the experiment setting in Pan et al. (2019); Sun 414

et al. (2022), the 3,214 blurry-sharp image pairs in GoPro 415

dataset are split into 2,103 pairs for training and 1,111 pairs 416

for testing. The blurred images are synthesized by averaging 417

consecutive high-framerate sharp frames.

Table 1. Performance on image deblur.
Methods event PSNR SSIM

E2VID Rebecq et al. (2019) ✓ 15.22 0.651
DeblurGAN Kupyn et al. (2018) ✗ 28.70 0.858
EDI Pan et al. (2019) ✓ 29.06 0.940
DeepDeblur Nah et al. (2017a) ✗ 29.08 0.914
DeblurGAN-v2 Kupyn et al. (2019) ✗ 29.55 0.934
SRN Tao et al. (2018) ✗ 30.26 0.934
SRN+ Tao et al. (2018) ✓ 31.02 0.936
DMPHN Zhang et al. (2019) ✗ 31.20 0.940
D2Nets Shang et al. (2021) ✓ 31.60 0.940
LEMD Jiang et al. (2020) ✓ 31.79 0.949
Suin et al. Suin et al. (2020) ✗ 31.85 0.948
SPAIR Purohit et al. (2021) ✗ 32.06 0.953
MPRNet Zamir et al. (2021) ✗ 32.66 0.959
HINet Chen et al. (2021) ✗ 32.71 0.959
ERDNet Chen et al. (2020) ✓ 32.99 0.935
HINet+ Chen et al. (2021) ✓ 33.69 0.961
NAFNet Chen et al. (2022) ✗ 33.69 0.967
DFFN Kong et al. (2023) ✗ 34.21 0.969
DSTN Pan et al. (2023) ✗ 35.05 0.973
EFNet Sun et al. (2022) ✓ 35.46 0.972

NIRE ✓ 35.03 0.973

418

As shown in Tab. 1 and Fig. 6, the proposed NIRE out- 419

performs most frame-only methods, and achieves comparable 420

performance with the competitive event-based method EFNet. 421

This demonstrates the effectiveness of our proposed method. 422

Most existing methods restore the sharp frame of a fixed times- 423

tamp (e.g.middle of exposure time). In contrast, NIRE is able 424

to derive sharp images of arbitrary specified timestamps. Fur- 425

thermore, by specifying the neural shutter to differet width, the 426

sharpness of the output image can be controlled, as shown in 427

Fig. 7(a)(b). 428

5.4. Video Frame Interpolation 429

To validate the effectiveness of our method on VFI task, we 430

evaluate the proposed NIRE method following the same set- 431

ting as event-based VFI method Tulyakov et al. (2021) on Go- 432

Pro. As shown in Tab. 2, NIRE achieves much better perfor- 433

mance than conventional frame-only methods and is on par 434

2An available ground truth refers to a high quality image involved in the
synthesis of the degraded images
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NIRE (ours)Ground Truth EFNetNAFNet HINetBlurry Input

DSUN EvUnrollGround Truth NIRE (Ours)JCDBlurry RS Input

Fig. 6. Qualitative result of NIRE dealing with degraded images. For optimal viewing, please zoom in.

Whole Time Span Neural Shutter

(a)

(c)

(b)

(d)

Fig. 7. Illustration of the neural shutter and the resulted images. For optimal viewing, please zoom in.

Fig. 8. Illustration of the NIRE recovering sharp images of arbitrary specified timestamps.

with the specially designed event-based VFI method Time-435

Lens Tulyakov et al. (2021). Fig. 7(c) and Fig. 8 gives illus-436

tration about intermediate frames predicted at arbitrary normal-437

ized timestamp.438

5.5. Joint Deblur and Rolling Shutter Correction 439

The proposed NIRE method is also validated on the RS cor- 440

rection task, following the experiment setting of EvUnroll Zhou 441

et al. (2022). 442

Benefit from the visual content constructor, NIRE is able to 443
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Table 2. Performance on video frame interpolation

Method frames events 7 frames skip 15 frames skip

PSNR SSIM PSNR SSIM

DAIN Bao et al. (2019) ✓ ✗ 28.81 0.876 24.39 0.736
SuperSloMo Jiang et al. (2018) ✓ ✗ 28.98 0.875 24.38 0.747
RRIN Li et al. (2020) ✓ ✗ 28.96 0.876 24.32 0.749
BMBC Park et al. (2020) ✓ ✗ 29.08 0.875 23.68 0.736
EMA-VFI Zhang et al. (2023) ✓ ✗ 32.79 0.942 29.70 0.904
E2VID Rebecq et al. (2019) ✗ ✓ 9.74 0.549 9.75 0.549
EDI Pan et al. (2019) ✓ ✓ 18.79 0.670 17.45 0.603
TimeLens Tulyakov et al. (2021) ✓ ✓ 34.81 0.959 33.21 0.942

NIRE ✓ ✓ 34.97 0.964 32.85 0.945

Table 3. Performance on joint deblur and RS correction. unroll+deblur
indicates using blurry RS images as input and performing both deblur and
unroll tasks simultaneously, while unroll indicates using sharp RS image as
input and only performing the unroll task.

Methods events PSNR SSIM

DSUN Liu et al. (2020)(unroll) ✗ 23.10 0.70
JCD Zhong et al. (2021)(unroll) ✗ 24.90 0.82
EvUnroll Zhou et al. (2022)(unroll+deblur) ✓ 30.14 0.91
EvUnroll Zhou et al. (2022)(unroll) ✓ 32.16 0.91

NIRE(unroll+deblur) ✓ 29.86 0.91
NIRE(unroll) ✓ 31.75 0.91

Table 4. Performance on joint deblur and frame interpolation.
Methods unified events PSNR SSIM

SRN Tao et al. (2018) + SloMo Jiang et al. (2018) ✗ ✗ 24.72 0.7604
SRN + MEMC-Net Bao et al. (2021) ✗ ✗ 25.70 0.7792
SRN + DAIN Bao et al. (2019) ✗ ✗ 25.17 0.7708
EDVR Wang et al. (2019) + SloMo ✗ ✗ 24.85 0.7762
EDVR + MEMC-Net ✗ ✗ 27.12 0.8301
EDVR + DAIN ✗ ✗ 29.01 0.8981
UTI-VFI ✓ ✗ 25.63 0.8148
EVDI Zhang and Yu (2022) ✓ ✓ 25.89 0.7922
PRF Shen et al. (2021) ✓ ✗ 25.68 0.8053
TNTT Jin et al. (2019) ✓ ✗ 26.68 0.8148
DeMFI-Net Oh and Kim (2022) ✓ ✗ 31.25 0.9102

NIRE-cascade ✗ ✓ 30.18 0.8923
NIRE ✓ ✓ 33.43 0.9477

construct the visual content representation from the images with444

motion blur and rolling shutter effect. Once the visual content445

representation is constructed, we can retrieve arbitrary desired446

global shutter image free of motion blur.447

As shown in Tab. 3 and Fig. 6, NIRE outperforms the448

frame-only methods and achieves comparable performance449

with the SOTA event-based method EvUnroll Zhou et al.450

(2022), demonstrating the effectiveness of NIRE on jointly re-451

moving rolling shutter artifact and blur.452

5.6. Joint Deblur and Frame Interpolation453

In addition, the proposed method is also validated on the task454

of joint deblur and frame interpolation following the same set-455

ting as DeMFI Oh and Kim (2022). The conventional VFI task456

usually assumes the given key frames are sharp. Nonetheless,457

videos that require interpolation are often degraded by blur in-458

duced by either camera motion or object movement, which de-459

grades the interpolation results.460

Simply cascading an image deblur model and a VFI model461

is a direct solution, but it will lead to error accumulation and462

suboptimal performance. In contrast, NIRE inherently resolves463

all visual quality issues simultaneously. As shown in Tab. 4,464

NIRE outperforms existing frame-only methods by a large mar- 465

gin, showing its advantage in handling the joint task. We also 466

try to apply NIRE twice, one for deblur and one for frame in- 467

terpolation, resulting in a pipeline denoted as NIRE-cascade. It 468

achieves significantly worse performance than addressing them 469

in the unified manner, showing the advantage of re-exposure 470

paradigm. 471

5.7. Ablation Study 472

Ablation study is conducted to investigate importance of 473

components of the proposed framework. In Tab. 5, ‘NIRE w/o 474

event’ represents the baseline with the visual content represen- 475

tation is construct only based on the frame, without incorpo- 476

rating the events. ‘NIRE w/o TimEnc’ denotes the NIRE by 477

simply disabling the time encodings. ‘NIRE w/o FeatEnhance‘ 478

denotes the NIRE without feature enhancement module. The 479

results show all these components are necessary for our pro- 480

posed architecture. 481

Table 5. Ablation study of NIRE (in PSNR/SSIM and Flops/Params).
Tasks VFI Deblur Unroll Deblur+VFI Flops(G)/Params(M)
NIRE 34.97/0.964 35.03/0.973 29.86/0.908 33.43/0.948 438.8/33.2

w/o Event 30.40/0.886 29.53/0.928 24.08/0.803 26.46/0.815 321.7/25.6
w/o TimEnc 31.23/0.921 33.44/0.955 20.38/0.584 29.76/0.874 437.8/33.2

w/o FeatEnhance 32.83/0.928 33.78/0.952 26.42/0.835 30.62/0.894 435.2/33.0

In addition, we compare specialized and versatile NIRE 482

models by restricting the training data. Specifically, when we 483

restrict the training data to blurry-sharp pairs, the NIRE model 484

is specialized for deblur. When we restrict the training data 485

to RS-GS pairs, the NIRE model is specialized for Unrolling 486

task. When we restrict the training data to keyframe and inter- 487

mediate frames, the NIRE model is specialized for VFI task. 488

As shown in Tab. 6, the re-exposure pardigm is not only ver- 489

satile, but also performs on-par with or even better than spe- 490

cilized counterparts, demonstrating different tasks are naturally 491

unified, without conflicting with each other. 492

Table 6. Comparison of specialized and versatile NIRE (in PSNR/SSIM).

task
strategy

MT VFI Deblur Unroll

VFI 34.97/0.964 34.44/0.955 - -
Deblur 35.03/0.973 - 34.72/0.966 -
Unroll 30.08/0.909 - - 30.04/0.909

6. Conclusion 493

In this work, we highlight that a variety of visual issues can 494

be attributed to sub-optimal exposure. Through a paradigm 495

called re-exposure, the degraded images can be restored in a 496

controllable way. Following the re-exposure paradigm, a novel 497

architecture called NIRE is proposed, which constructs repre- 498

sentation of visual content from images and events and per- 499

forms exposure simulation under the control of a neural shut- 500

ter. By adjusting the simulated exposure to a desired state, the 501

proposed method can be used to address multiple tasks, includ- 502

ing deblur, rolling shutter correction, and joint deblur and frame 503

interpolation. 504
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