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Reduced-Reference Quality Assessment of Point
Clouds via Content-Oriented Saliency Projection

Wei Zhou, Guanghui Yue, Ruizeng Zhang, Yipeng Qin, and Hantao Liu

Abstract—Many dense 3D point clouds have been exploited to
represent visual objects instead of traditional images or videos.
To evaluate the perceptual quality of various point clouds, in
this letter, we propose a novel and efficient Reduced-Reference
quality metric for point clouds, which is based on Content-
oriented sAliency Projection (RR-CAP). Specifically, we make
the first attempt to simplify reference and distorted point clouds
into projected saliency maps with a downsampling operation.
Through this process, we tackle the issue of transmitting large-
volume original point clouds to end-users for quality assessment.
Then, motivated by the characteristics of the human visual system
(HVS), the objective quality scores of distorted point clouds are
produced by combining content-oriented similarity and statistical
correlation measurements. Finally, extensive experiments are
conducted on SJTU-PCQA and WPC databases. The experiment
results demonstrate that our proposed algorithm outperforms
existing reduced-reference and no-reference quality metrics, and
significantly reduces the performance gap between state-of-the-
art full-reference quality assessment methods. In addition, we
show the performance variation of each proposed technical
component by ablation tests.

Index Terms—Point clouds, reduced-reference quality metric,
visual content, saliency projection, human visual system.

I. INTRODUCTION

MASSIVE visual data are emerging in our daily lives.
Especially in recent years, due to the vigorous devel-

opment of 3D capture and rendering techniques, point cloud
has become one of the most popular immersive media formats.
It leads to lots of real-world applications, such as automatic
diving, mixed reality, remote sensing, and so on [1], [2].
Usually, a dense point cloud is a 3D model and has a group
of scattered points in space, which is employed to represent
an object. Each point owns geometric coordinates and photo-
metric attributes. Similar to conventional images/videos, point
clouds have also undergone a variety of artifacts during the
multimedia signal processing chain, from acquisition, com-
pression, to transmission, reconstruction, and display [3]–[5].
In other words, these procedures will inevitably cause quality
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degradation at end-users. Therefore, the quality evaluation of
point clouds is crucial to monitor and guarantee satisfactory
quality-of-experience.

The subjective quality assessment is the most dependable
method because humans are the final receivers of point clouds.
By carrying out relevant subjective tests, several point cloud
quality databases have been established [6]–[9]. However,
such subjective tests are often time-consuming, expensive,
and labor-intensive. Thus, how to design effectively objective
quality assessment models according to the well-known human
visual system (HVS) is a challenging yet promising research
direction.

Generally, for the objective quality metrics of point clouds,
there exist three categories including full-reference (FR), no-
reference (NR), and reduced-reference (RR). When pristine
information is entirely accessible, FR methods are proposed
by computing the difference or similarity between the distorted
and pristine point clouds. The earliest FR metrics are used for
the standardization body of MPEG point cloud compression,
which involve point-to-point [10], point-to-plane [11], point-
to-mesh [12], and plane-to-plane [13], etc. These methods
compute the distance deviation between reference and dis-
torted point clouds. Afterward, Yang et al. [14] developed
the graph similarity index (GraphSIM) method based on
graph signal processing, and also extended it to a multiscale
variant [15]. Inspired by the structural similarity index (SSIM)
[16], Alexiou et al. [17] exploited geometry, normal vectors,
curvature values, and color information to form PointSSIM.
Moreover, in [18], Meynet et al. utilized local curvature
statistics to construct PC-MSDM and also extended it to the
point cloud quality metric (PCQM) [19] according to the
optimal composition of color and curvature features. Lu et
al. [20] compared the 3D edge similarity to quantify point
cloud quality. Except for direct comparisons on 3D point
cloud models, other FR methods project point cloud data onto
many 2D images from different views. Then, the mainstream
traditional quality evaluation algorithms can be employed,
such as PSNR and SSIM.

In real scenarios, the whole information of original reference
point clouds may not be available. Several NR methods
have been developed to estimate the visual quality from
distorted point clouds, both from hand-crafted and learning-
based aspects. For example, according to 3D natural scene
statistics (NSS), Zhang et al. [21] presented the NR-3DQA for
evaluating point cloud quality. In [22], the point cloud quality
assessment network (PQA-Net) was designed on the basis
of the multi-task learning. In addition, by view projection,
2D quality metrics in NR manner can be applied, e.g., the
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Fig. 1: Overall framework of the proposed RR-CAP, where D© and P© are the downsampling and pooling operations, respectively.

representative NSS methods called blind image spatial quality
evaluator (BRISQUE) [23] and natural image quality evaluator
(NIQE) [24]. Suppose when part of reference information can
be obtained, RR metrics provide an intermediate solution.
Nevertheless, in the literature, very few RR quality evaluation
approaches for point clouds have been proposed. Liu et al. [25]
exploited quantization parameters to estimate the perceptually
visual quality of V-PCC compressed point clouds. To our
best knowledge, there exists only one general-purpose RR
metric named PCMRR [26] which relies on a small number
of statistics from the original point clouds regarding geometry,
normal vector, and color. The HVS characteristics are lacking
in the design philosophy of the PCMRR method.

To fill the blank of the above-mentioned problem, we
propose the RR metric based on Content-oriented sAliency
Projection (RR-CAP). The primary contributions of the letter
are summarized as:

1) Motivated by the HVS properties, we propose the first
image-based RR point cloud quality assessment method
via saliency projection.

2) The content-oriented similarity and statistical correlation
measurements are developed in the proposed framework.

3) Our proposed quality metric can relieve the transmission
burden for the large amount of point data, while still
show competitive performance when tested on subject-
rated databases.

The remaining parts of this paper are organized as follows.
Section II first introduces RR-CAP metric in detail. In Section
III, we then show experiment results and analyses on public
point cloud quality databases. Finally, we conclude our work
as well as give the link of the specific algorithm implementa-
tion in Section IV.

II. PROPOSED RR-CAP METRIC

The general architecture of our RR-CAP metric is drawn
in Fig. 1. To reduce the large-scale point cloud data from
reference side, we first extract the downsampled saliency
maps after view projection. The content-oriented similarity
and statistical correlation are then integrated to estimate the
perceptually visual quality score for test point cloud.

A. Saliency Extraction in Projected Planes

When subjects browse the targeted point clouds, they would
synthesize the quality sensation from all views, resulting in the
final experience. Therefore, we project both original and test
3D models into multiple 2D image planes. Here, we adopt the
six perpendicular projections [6] which can uniformly cover
most of the viewed content.

Because introducing artifacts may change the saliency be-
haviors and the HVS is more sensitive to distortions in salient
areas, visual saliency plays a vital role in quality evaluation
[27], [28]. After view projection, we extract saliency maps by
image signature [29]. Specifically, for each projected image I ,
we first downsample the projection to a coarser counterpart as
follows:

Ĩ(i, j) = A ∗ I(si, sj), (1)

where s represents the downsampling scale. i = 1, 2, . . . , Is
and j = 1, 2, . . . , Js are indexes for the row and column of
downsampled image, respectively. A indicates a low-passing
filter. Moreover, ∗ denotes the convolution operation.

Then, a sign function of discrete cosine transform (DCT)
coefficients [30] is specified as image signature for downsam-
pled projection, which can be calculated by:

Î = sign(DCT(Ĩ)). (2)

With the image signature in the transformed format, we can
convert it back to the spatial domain by inverse DCT (IDCT)
and compute the saliency map as:

m = IDCT(Î)� IDCT(Î), (3)

where � indicates the Hadamard product. As can be seen from
Fig. 1, instead of using visual saliency as weighting maps in
most existing works, the downsampled saliency maps serve as
the reduced-reference information in our proposed framework,
which can alleviate the large transmission data of original point
clouds.



IEEE SIGNAL PROCESSING LETTERS 3

Fig. 2: An example to illustrate the relationship between visual
content and quality degradation, where P1 and P2 are two
projection views.

B. Content-Oriented Similarity Measurement

Intuitively, we can measure image structural similarity be-
tween original and test projected saliency maps. Given a
distorted saliency map md along with the corresponding orig-
inal reference saliency map mr, we compute their structural
similarity as follows:

S =
(2µrµd + C1) (2σrd + C2)

(µ2
r + µ2

d + C1) (σ2
r + σ2

d + C2)
, (4)

where µr, µd, σ2
r , σ2

d, and σrd represent the corresponding
local mean, variance, as well as covariance of pristine and
distorted saliency maps. C1 and C2 are stabilizing constants.

Along with pooling the similarities for all views, we employ
a content-oriented weighting strategy, which shows more con-
sistency with the HVS perception. Considering that content is
usually quantified by spatial information by using the Sobel
filter [31], here the spatial variation is taken as the weight and
calculated by:

w = |std [Sobel (Id)]− std [Sobel (Ir)]| , (5)

where std[·] denotes the standard deviation that operates over
the image pixels. Ir and Id represent the reference and dis-
torted projected images, respectively. Let n be the number of
projection views. The content-oriented similarity measurement
is obtained as follows:

Sw =
1

n

∑
Sw. (6)

To show how the proposed content-oriented weighting strat-
egy works, we provide two pairs of projection views with small
and large distortion degrees, as illustrated in Fig. 2. We can
discover that the visual contents from various views generally
have different spatial variations. Additionally, the projection
view with large distortion causes more spatial variation.

C. Statistical Correlation Measurement

Apart from the content-oriented similarity measurement,
statistical information from the saliency maps is also important

for point cloud quality. Therefore, for each test point cloud,
we formulate the statistical correlation measurement by:

Hc =
1

n

∑ E [hrhd]− E [hr] E [hd]√
E [h2r]− (E [hr])

2
√

E [hd2]− (E [hd])
2
, (7)

where E[·] represents the expectation operator. hr and hd are
the statistical histograms of original reference and distorted
saliency maps, respectively.

Through the aforementioned procedures, we have two
quality measurements, i.e., Sw and Hc, for content-oriented
similarity and statistical correlation, respectively. Finally, the
objective quality scores for distorted point clouds can be
calculated as:

Q = Sw ·Hc. (8)

III. RESULTS AND ANALYSES

In this section, we here compare our RR-CAP with many
existing quality metrics on publicly subject-rated quality
databases for point clouds. Besides, the ablation test is also
conducted to verify the performance of each proposed techni-
cal component.

A. Experimental Protocols

We carry out extensive experiments on SJTU-PCQA [6]
and WPC [7] databases. Both databases provide mean opinion
score (MOS) as ground-truth subjective label for each distorted
point cloud sample.

• SJTU-PCQA database: is composed of 9 reference point
cloud samples. Several distortion types including geom-
etry Gaussian noise, color noise, downscaling, octree-
based compression, and their mixture are applied to
generate 378 distorted point clouds. Each distortion type
involves six levels.

• WPC database: has 20 original point clouds with four
distortion types, resulting in 740 distorted point clouds.
To be specific, there exist 60 samples with downsampling
distortion, 180 point clouds with Gaussian noise, 320
and 180 samples compressed by the G-PCC and V-PCC
codecs, respectively.

Four widely used evaluation criteria are adopted for per-
formance comparisons, including Spearman rank-order corre-
lations coefficient (SROCC), Kendall rank-order correlation
coefficient (KROCC), Pearson linear correlation coefficient
(PLCC), and root mean square error (RMSE). Among them,
SROCC and PLCC/RMSE are employed to measure the mono-
tonicity and accuracy of predictions, respectively. The KROCC
is used for the ordinal association between two measured
quantities. An excellent quality metric should have SROCC,
KROCC, and PLCC near one, and RMSE closes to zero. Note
that a nonlinear fitting process [32] is utilized to map the
predicted qualities into the common scale space of subjective
quality labels before computing the PLCC and RMSE for
different quality metrics.
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TABLE I: The performance comparisons of objective quality metrics on SJTU-PCQA and WPC databases. Note that the best
performance values for FR, NR, and RR are in bold.

Ref Type Method SJTU-PCQA Database WPC Database
SROCC KROCC PLCC RMSE SROCC KROCC PLCC RMSE

FR
Model-based

GraphSIM [14] 0.8483 0.6448 0.8449 1.5721 0.5831 0.4194 0.6163 17.1939
PointSSIM [17] 0.6867 0.4964 0.7136 1.7001 0.4542 0.3278 0.4667 20.2733
PCQM [19] 0.8544 0.6586 0.8653 1.2162 0.7434 0.5601 0.7499 15.1639

Image-based PSNR 0.2422 0.1077 0.2317 2.3124 0.4235 0.3080 0.4872 15.8133
SSIM [16] 0.2987 0.1919 0.3476 2.1770 0.3878 0.3234 0.4944 15.7749

NR
Model-based NR-3DQA [21] 0.7144 0.5174 0.7382 1.7686 0.6479 0.4417 0.6514 16.5716

Image-based BRISQUE [23] 0.2051 0.1121 0.2241 2.2428 0.3781 0.2444 0.4176 22.5414
NIQE [24] 0.2214 0.1512 0.3764 2.2671 0.3887 0.2551 0.3957 22.5502

RR Model-based PCMRR [26] 0.4816 0.3362 0.6191 1.9342 0.3097 0.2082 0.3433 21.5302
Image-based Proposed RR-CAP 0.7577 0.5508 0.7691 1.5512 0.7162 0.5260 0.7307 15.6485

B. Performance Comparisons

In order to validate the proposed RR-CAP method, we com-
pare it with existing objective quality evaluation approaches
including FR, NR, and RR metrics. As shown in TABLE I, we
provide the performance results regarding SROCC, KROCC,
PLCC, and RMSE. Generally, the compared metrics are clas-
sified into 2 types: model-based and image-based methods.
The model-based metrics directly operate from 3D models,
which consist of GraphSIM [14], PointSSIM [17], PCQM
[19], NR-3DQA [21], and PCMRR [26]. The image-based
metrics project the 3D models into 2D image planes, and then
perform quality assessment on the corresponding projections.
The compared image-based metrics involve PNSR, SSIM [16],
BRISQUE [23], and NIQE [24]. Note that PCMRR is the only
RR method and belongs to model-based metrics. That is, there
has been no investigation on image-based RR metrics specif-
ically designed for point clouds yet. Therefore, we try to fill
this gap and propose an image-based RR point cloud quality
evaluation method according to the HVS characteristics.

From the quantitative table, we make the following analyses.
First, conventional image-based metrics show fewer effects
in estimating perceptual quality since they do not take the
properties of point clouds into account. Second, our proposed
RR-CAP are superior to other RR and NR methods including
both model-based and image-based ones. This demonstrates
the superiority of the proposed method although it is an image-
based metric. Note that our proposed metric significantly
performs better than PCMRR. This is mainly due to the
consideration of the HVS perception and viewing process in
our framework. Third, we find that the proposed RR metric
can greatly reduce the performance gap compared to the FR
model-based quality assessment methods.

C. Ablation Tests

It is interesting to test the performance of each proposed
component and parameter of our method. In Figs. 3 and 4, we
show the results regarding content-oriented weighting strategy,
statistical histogram feature, and downsampling scales.

From the figures, we can see that our method improves
gradually by adding the weighting strategy and statistical
information. This validates the effectiveness of the proposed
technical components. Besides, larger downsampling scales
can save more transmitted resources. To obtain the best

(a) (b)

Fig. 3: Performance variation regarding each component,
where “-” indicates removing the item. W and H are the
weighting strategy and statistical histogram feature. (a) Run
on SJTU-PCQA database; (b) Run on WPC database.

(a) (b)

Fig. 4: Performance change with various downsampling scales.
(a) Run on SJTU-PCQA database; (b) Run on WPC database.

performance and also relieve transmission burden, we choose
16 for the downsampling scale in our proposed framework.
With the saliency projection and downsampling operations,
we only need 2,166 pixels for the reference information.

IV. CONCLUSION

In this letter, we have proposed an effective RR metric
for the objective quality evaluation of point clouds. Inspired
by the characteristics of the HVS, our method is based
on downsampled saliency projection, followed by content-
oriented similarity and statistical correlation measurements.
Experiments show that our RR-CAP obtains promising con-
sistency with subjective ratings, compared to state-of-the-art
quality assessment methods. The source codes of our metric
are available at: https://github.com/weizhou-geek/RR-CAP.
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