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ABSTRACT

Many retinal images sometimes suffer from uneven illumi-
nation, which influences the analysis and diagnosis of reti-
nal diseases. To improve the image quality of those reti-
nal images, one feasible solution is to utilize low-light im-
age enhancement (LIE) algorithms. However, how to evalu-
ate the perceptual quality of enhanced retinal images (ERIs)
generated by different LIE algorithms remains a challenging
problem. In this paper, we conduct subjective experiments
to investigate the quality assessment of ERIs. First, we col-
lect 250 retinal images with the authentic low-light distor-
tion, and then adopt eight LIE algorithms to produce 2000
ERIs. Second, a subjective experiment is conducted, result-
ing in the proposed Enhanced Retinal Image Quality Assess-
ment Database (ERIQAD). Finally, we test some well-known
no reference image quality assessment (NR IQA) methods
on our proposed ERIQAD. Experimental results demonstrate
that existing mainstream NR IQA methods merely achieve or-
dinary performance to predict the perceptual quality of ERIs.

Index Terms— Retinal images, image quality assessment
(IQA), subjective assessment, no reference (NR)

1. INTRODUCTION

Nowadays, retinal images are widely used in the screening
and diagnosis of retinal diseases such as diabetic retinopathy,
glaucoma, and age-related macular degeneration [1,2]. How-
ever, the visual quality of retinal images is various due to the
different operating levels of ophthalmologists and the influ-
ence of acquisition environment [3, 4]. Generally, retinal im-
ages have some distortion interferences especially uneven il-
lumination [5]. Low-quality retinal images not only affect the
clinical diagnosis of related diseases, but also are fatal defects
for computer-aided diagnosis systems. Thus, it is necessary
to enhance and improve the retinal image quality.

In recent years, many low-light image enhancement (LIE)
algorithms have been reported to improve image quality in the
literature [6–10]. However, existing LIE algorithms are most-
ly designed for natural scene images (NSIs), which are sig-
nificantly different from retinal images regarding the charac-

teristics and purposes. Moreover, when processing different
kinds of images, the performance of LIE methods varies con-
siderably. Therefore, exploring reliable quality assessment
methods for enhanced retinal images (ERIs) is important.

In the literature, the quality assessment of NSIs has been
extensively discussed [11–13]. In general, it can be divided
into subjective and objective methods. The subjective method
requires the experiment to be set up scientifically and strictly,
and the experimental task determines the scoring rules, which
are the key part of a subjective test. The mainstream scoring
rules for NSIs are based on a continuous impairment scale
or five-grade rating scale, with key points on the scale cor-
responding to ‘Excellent’, ‘Good’, ‘Fair’, ‘Poor’, and ‘Bad’
quality levels. Specifically, the quality here refers mainly to
the visual experience. To date, many quality databases have
been constructed based on subjective experiments, which are
usually taken as the test platforms for objective methods.

Compared to NSIs, the quality assessment of ERIs has
distinctive characteristics and obvious differences. On the one
hand, we should simultaneously consider both visual experi-
ence and image utility to grade the ultimate quality. Different
from NSIs, which focus on a global image quality informa-
tion, in clinical practice, doctors focus more on whether fun-
dus images can accurately reflect the retinal anatomical struc-
ture (such as optic cup/disc, blood vessels) and pathological
information (such as exudates, hemorrhages, and macula). On
the other hand, ERIs have more complex artifacts caused by
LIE algorithms, which makes the quality assessment for ERIs
more challenging.

Therefore, we perform an in-depth investigation on the
quality assessment of ERIs from the subjective experimen-
t and build a specific database called Enhanced Retinal Im-
age Quality Assessment Database (ERIQAD). Following the
clinical practice, we first collect 250 retinal images with au-
thentic low-light distortion. Then, we adopt eight LIE algo-
rithms to process these original images for obtaining 2000
ERIs, which form our database to be scored. Secondly, for
each ERI, its quality is reported in the form of mean opinion
scores (MOSs) through a strict subjective experiment and da-
ta processing procedure. Lastly, as most of the current quality



assessment methods are designed for NSIs, we further inves-
tigate whether existing mainstream no reference (NR) objec-
tive quality assessment methods are effective in the quality
assessment task of ERIs.

2. THE ENHANCED RETINAL IMAGE QUALITY
ASSESSMENT DATABASE

2.1. Image Collection and Processing

To establish our ERIQAD, we first collect 250 low-light reti-
nal images from the University of Hong Kong-Shenzhen Hos-
pital. All retinal images are obtained according to standard
imaging protocols. To protect privacy, we then remove pa-
tient information in each image, such as name, gender, age,
treatment time, etc. Moreover, these retinal images are u-
niformly trimmed into the resolution of 512×512 pixels, as
original/raw images. In addition, to meet the clinical practice,
these images have sufficient content diversity. That is, there
are different retinal pathological features on the images, such
as exudate, hemorrhage, macula, etc. Some examples of the
selected raw images are given in the first column of Fig. 1.

After obtaining the processed 250 low-light retinal im-
ages, we adopt eight representative LIE algorithms to gen-
erate ERIs. Specifically, the LIE algorithms include six tra-
ditional algorithms (i.e., CLAHE [7], MF [8], NPEA [9], P-
M [14], LIME [15], NCE [10]) and two deep learning-based
algorithms (i.e., ZeroDCE [16], StillGAN [17]), where Still-
GAN [17] is specially designed for medical images. To be
rigorous, we run the official source code to obtain the model-
s, or directly load the pre-trained models provided by the au-
thors for each LIE algorithm. The low-light retinal images are
then fed into each model for enhancement processing. Thus,
we have a total of 2000 ERIs. Some ERI examples are shown
in Fig. 1, where each row represents enhanced results of the
same low-light image through eight LIE algorithms.

From Fig. 1, we can also find that the visual effects of
these ERIs are dependent on the characteristics of raw images
and adopted LIE algorithms. Specifically, some images can
be greatly enhanced by the algorithm to achieve a good qual-
ity level. However, some enhanced counterparts are worse
than the corresponding raw retinal image. This may be be-
cause in these cases, the LIE algorithm is not suitable for
such distortion scenarios. Additionally, ERIs generated by
various LIE algorithms have differences in brightness, con-
trast, and color. Besides, different from considering only the
visual senses, the quality of retinal images could be unsatis-
factory when they contain excessive brightness that obscure
the physicians’ observation of pathological information in s-
mall areas. Therefore, a comprehensive subjective study of
ERIs is essential to help us better understand the performance
of different LIE algorithms.

Fig. 1. Raw retinal images and the corresponding enhanced
results generated by different LIE algorithms.

2.2. Subjective Experiment

2.2.1. Scoring Rules

To obtain the subjective ratings of the produced ERIs, we first
ask the subjects to have a mentally expected score for the raw
retinal image as a base score, and this rating should take in-
to account not only the visual perception but also the image
utility. Then, the subjects rate the enhanced results, which
are added or subtracted on the base score according to the
following elements: 1) Whether the important structures of
ERIs (e.g. optic cup/disc, blood vessels) are enhanced to be
more clearly displayed. If they are enhanced, 1 to 2 points
are added to the base score according to the degree of opti-
mization; if there is no significant change, no points need to
be added or subtracted from the base score; if the clarity of
important structures is diminished, the base score will be re-
duced by 1 to 2 points depending on the degree. 2) Whether
the brightness of the ERIs can promote the observation of reti-
nal anatomy and pathological information. Similarly, accord-
ing to the judgment, add or subtract 1-2 points on the base
score according to the degree, or nothing to do if there is no
significant change. 3) Subtract 1-2 points from the base score
if ERIs own additional distortions such as blur, artifacts, etc.,
compared to the original image; or add 1-2 points if some
distortions are removed relative to the original image. The
rules are summarized in Table 1, and note that all the opera-
tions in Table 1 are performed on the base score. Therefore,
the final quality scores of ERIs are determined after adding
or subtracting points from the base score by considering al-
l the above three elements. In the whole rating process, the
subjective scores of ERIs range from 1 to 10.

2.2.2. Subjective Testing Procedure

The subjective testing involves eighteen participants (in-
cluding 8 males and 10 females with normal or corrected-
to-normal vision, 21 to 26 years old) major in biomedical



Table 1. Scoring rules for ERIs quality assessment.
Elements Descriptions

Structures
If structures are enhanced, add 1-2 points
If there are no significant changes, the score remains
If structures become less clear, subtract 1-2 points

Brightness
If image is more suitable to observe, add 1-2 points
If there are no significant changes, the score remains
If the image deteriorates, subtract 1-2 points

Other distortions
If distortions are reduced, add 1-2 points
If there are no significant changes, the score remains
If the image adds extra distortions, subtract 1-2 points

engineering. Before the experiment, all subjects first receive
careful training from two ophthalmologists, and basically
master the knowledge of retinal disease screening. They are
then asked to sit in front of a screen during the subjective
testing, which is conducted in a laboratory environment. It
should be noted that the indoor lighting of our experiment is
similar to that of the ophthalmologist’s office. To conform
to clinical practice, we set flexible viewing distances and
participants could maintain a comfortable position within the
designated viewing area.

In the formal subjective testing, there exist both training
and test phases. As for the training phase, subjects are re-
quired to be trained to understand the task and manipulation
of the experiment. When they fully understand the experi-
ment and can achieve high rating accuracy on the prepared
training samples, we then begin the test phase. Note that the
training samples are not included in the test phase as well as in
the formal database. During the test phase, we simultaneous-
ly display the raw low-light image and the two corresponding
ERIs at one time, with score selection buttons beside each
ERI. The graphical user interface of the scoring software is
shown in Fig. 2. The subjects are required to observe the
raw image and then rigorously grade each ERI according to
the experimental scoring rules. In addition, subjects are en-
couraged to stop and relax visual fatigue every 10 minutes.
All ERIs are randomly presented with the original resolution
without repetition on a 27-inch 1920×1080 Philips screen.
The scoring software will automatically record all the scoring
data of ERIs. To avoid accumulated visual fatigue, the whole
subjective experiment is divided into two sessions on three
different days, with 800 ERIs scored each time.

2.3. Subjective Data Processing

Generally, there are some differences in each participant’s rat-
ing data due to their different understanding of the experi-
mental task. Therefore, for the rationality of the experiment,
we first clean the collected scoring data. Here, we strictly
follow the outlier rejection method recommended by ITU-R
BT.500 [18] to remove the scoring data of outliers. By the da-
ta analysis and processing, we find that no rating data needed
to be removed from the subjects. Then, we utilize the collect-

Fig. 2. The graphical user interface of the scoring software.

ed subjective data to calculate the MOS value for each ERI.
Let rp,q denotes the q-th participant’s rating of the p-th image.
We calculate the MOS value (i.e., Mp) of the p-th image by

Mp =
1

q

Q∑
q=1

rp,q, (1)

where Q is the number of raters after the process of data
cleaning. Fig. 3 illustrates the MOS distribution of all images
in the proposed ERIQAD. As shown in Fig. 3, the subjective
quality scores are mainly distributed in the middle-right inter-
vals. The possible reason is that the brightness of the image
has a great influence on human perception. Thus, the visual
experience of ERIs is basically improved after the processing
of LIE algorithms. But it is not enough for the clinically used
retinal images. In addition, there are few perfect ERIs.

Fig. 3. MOS distribution for all ERIs in the proposed
ERIQAD.

3. EXPERIMENTS AND RESULTS

3.1. Experiment Setup

To the best of our knowledge, there are very few quality as-
sessment methods specifically designed for ERIs, thus we s-
elect eleven popular NR IQA algorithms to test their feasi-
bility in the ERIs quality assessment task. Specifically, they



can be further classified into three categories depending on
their applications. The first category includes one method,
named GWH-GLBP [19], which is specifically proposed for
evaluating authentically distorted images. The second cat-
egory is designed for quality evaluation of synthesized dis-
tortions, including BRISQUE [20], GM-LOG [21], IL-NIQE
[22], CIQA [23] , and NPQI [24]. The last category is de-
signed for quality evaluation of contrast change, including
NR-CDIQA [25], NIQMC [26], BIQME [27], MDM [28],
and NUIQ [29]. All these methods are implemented using
the released codes provided by the authors. To evaluate the
performance of these methods, we adopted four evaluation
criteria, i.e., Spearman rank correlation coefficient (SRCC),
Kendalls rank correlation coefficient (KRCC), Pearson lin-
ear correlation coefficient (PLCC), and Root mean-squared
error (RMSE). Besides, we adopt a five-parameter nonlinear
regression function suggested by video quality expert group
[30] before computing PLCC and RMSE. The nonlinear func-
tion can be formed as

f(so) = κ1

[
1

2
− 1

eκ2(so−κ3) + 1

]
+ κ4 · so + κ5, (2)

where so and f(so) are the predicted scores obtained by
an objective quality assessment method and the mapped
quality score with the same scale of MOS, respectively. κi
(i ∈ {1, 2, · · · 5}) are the parameters to be fitted using it-
erative least squares estimation. Generally, a superior NR
IQA method should have higher values of SRCC, KRCC, and
PLCC, while lower value of RMSE.

3.2. Experimental Results and Analysis

Table 2 lists the performance results of the selected NR IQA
methods. According to Table II, first, we can find that the per-
formance of all the methods varies greatly on our proposed
ERIQAD. Specifically, CIQA shows the best performance
among all 11 methods, with the PLCC, SRCC, KRCC and
RMSE of 0.7982, 0.7783, 0.6386, and 0.9798, respective-
ly. In contrast, NIQMC is in the opposite and achieves very
mediocre performance. Such low performance indicates that
there will be a large number of images being incorrectly
rated, which is obviously not applicable to the clinical exam-
ination and diagnosis of retinal diseases. Second, it is clear
that opinion-aware methods, e.g., BRISQUE, GM-LOG, and
BIQME, are easier to obtain satisfactory performance than
those opinion-unware methods, such as IL-NIQE, NIQM-
C, and NPQI. Third, some learning-based contrast-specific
methods, e.g., NR-CDIQA and MDM are not competent for
the quality assessment task of ERIs.

The possible reasons for above phenomenon are as fol-
lows. First, apart from the common texture and color dis-
tortions, the subjective evaluation of retinal image quality
considers the semantic distortions, e.g., important anatomi-
cal structures and pathological information. However, these

methods commonly extract low-level features, such as tex-
ture, color, etc., which is insufficient to characterize those
semantic distortions. Therefore, they only achieve the limited
performance on ERIQAD. Second, with supervised learning,
opinion-aware methods are easier to build mapping relation-
ship between feature space to quality space than opinion-
unaware methods. Third, NR-CDIQA and MDM only con-
sider limited statistical entropy-based features, which are
insufficient to represent the complex distortions in ERIs.

Table 2. Performance results of objective quality assessment
methods on the proposed ERIQAD.

Metrics Evaluation Criteria
PLCC SRCC KRCC RMSE

GWH-GLBP [19] 0.7796 0.7630 0.6114 1.0141
BRISQUE [20] 0.7681 0.7358 0.5792 1.0383
GM-LOG [21] 0.7796 0.7594 0.6101 1.0145
IL-NIQE [22] 0.5435 0.4452 0.3158 1.3614
CIQA [23] 0.7982 0.7783 0.6386 0.9798
NPQI [24] 0.5566 0.4538 0.3238 1.3525
NR-CDIQA [25] 0.4730 0.5038 0.3544 1.4390
NIQMC [26] 0.2385 0.2058 0.1422 1.5800
BIQME [27] 0.7879 0.7700 0.6233 0.9985
MDM [28] 0.5029 0.5089 0.3626 1.4055
NUIQ [29] 0.7885 0.7708 0.6238 0.9983

4. CONCLUSION AND FUTURE WORK

In clinics, retinal images often suffer from uneven illumina-
tion problems. These low-quality retinal images will affect
the observation and diagnosis of retinal diseases. Although
these years have reported many LIE algorithms to improve
image quality, very little work has been devoted to the qual-
ity assessment of ERIs processed by LIE algorithms. There-
fore, in this study, we construct a subjective quality database
called ERIQAD aiming at evaluating the perceptual quality
of ERIs generated by various LIE algorithms. Furthermore,
we investigate the performance of some well-known NR IQA
methods on the ERIQAD. The experimental results show that
these methods are not fully qualified for predicting the visual
quality of ERIs. In the future, we plan to analyze and quan-
tify the specific distortion properties for ERIs, especially the
characteristics of the optic cup/disc, blood vessels, as well as
the capture of pathological information.
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