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Abstract—The image distortions are complex and dynamically
changing in the real-world scenario, due to the fast development
of the image processing system. The blind image quality assess-
ment (BIQA) models may encounter the challenge of processing
images with distortion types never seen before deployment. How-
ever, existing BIQA models generally cannot evolve with unseen
distortion types adaptively, which greatly limits the deployment
and application of BIQA models in real-world scenarios. To
address this problem, we propose a novel Lifelong blind Image
Quality Assessment (LIQA) approach, targeting to achieve the
lifelong learning of BIQA. Without accessing to previous training
data, our proposed LIQA can not only learn new knowledge, but
also mitigate the catastrophic forgetting of learned knowledge.
Specifically, we adopt the Split-and-Merge distillation strategy to
train a single-head network that makes task-agnostic predictions.
In the split stage, we first employ a distortion-specific generator
to generate pseudo features of each previously seen distortion.
Then, we utilize an auxiliary multi-head regression network to
keep the response of each distortion. In the merge stage, we
replay the pseudo features and use the pseudo labels generated by
the auxiliary multi-head network to distill the knowledge of the
multiple heads, which can build the final regression single head.
Extensive experiments demonstrate that LIQA can perform well
in handling both inner-dataset distortion shift and cross-dataset
distortion shift. More importantly, our model can achieve stable
performance even if the task sequences are long.

Index Terms—Blind image quality assessment, lifelong learn-
ing, Split-and-Merge distillation, pseudo memory replay.

I. INTRODUCTION

BLIND image quality assessment (BIQA) is a challenging
problem, which aims to automatically predict perceptual

image quality without any information of reference images. It
has received widespread attention due to the high demand in
practical applications where reference images are difficult to
obtain or even unavailable. Since various distortions would be
generated at each stage of signal processing (e.g. acquisition,
compression, and transmission), a reliable general-purpose
BIQA algorithm is urgently needed. Existing general-purpose
BIQA models assume that all samples are available during the
training phase, which requires the retraining of the network
parameters on the entire dataset in order to adapt to changes
in the data distribution [1]. However, learning models incre-
mentally in this paradigm results in catastrophic forgetting of
previously learned tasks when trained on sequential tasks, a
phenomenon where the performance on the original (old) set of
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Fig. 1: Illustration of the distortion shift in IQA.

tasks degrades dramatically [2]–[6]. A static model, obviously,
is suboptimal in the face of a dynamic environment. The
network which can continually accumulate knowledge over
different tasks without retraining from scratch is of urgent need
and significance in real-world applications.

In IQA problems, distortion shift is the common and most
crucial factor that leads to the catastrophic forgetting phe-
nomenon during the sequential learning process. For example,
for coding artifacts such as JPEG2000 and JPEG compression,
lower sensitivities are assigned to image regions with higher
activity while the artifacts in homogeneous regions are easier
to observe. On the contrary, when the images are distorted
by blur artifacts, strong edges are paid more attention rather
than flat regions [7]. Therefore, there exist differences in
human perceptual judgments of different distortion types. That
is, combining different distortions could result in perceptual
conflicts which further causes catastrophic forgetting.

As shown in Fig.1, the IQA data space can be categorized
into various distortion scenarios (such as synthetic, authentic,
screen content, VR and so on) [8]. Each distortion scenario
contains multiple datasets and each dataset covers specific
distortion types. In this paper, we divide the distortion shift
into two levels: inner-dataset distortion shift and cross-dataset
distortion shift. Here, inner-dataset distortion shift occurs when
the BIQA model needs to sequentially learn novel distortions
within the same dataset. For example, a BIQA model is first
trained on partial distortion types in a dataset and employed in
the system. Later, new distortion types are required to be added
based on the same reference images. Cross-dataset distortion
shift happens when the BIQA model needs to sequentially
learn different datasets (under the same distortion scenario or
different distortion scenarios). For example, the BIQA model
is first trained on a synthetic dataset and then is provided for
an authentic dataset. We define new tasks as learning new
distortions covering inner-dataset distortions and cross-dataset
distortions in this paper, and our LIQA targets at handling both
inner-dataset distortion shift and cross-dataset distortion shift.

One straightforward way to mitigate catastrophic forgetting
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TABLE I: SRCC performance of each distortion of joint training when adding one novel distortion each task.

SRCC CQ JPEG CSA1 WNCC Q JIT IN JP2K CSA2 PIX WN CB
Initial 0.778 0.823 0.323 0.888 0.8551 0.889 0.861 - - - - -
+JP2K 0.838 0.865 0.179 0.910 0.882 0.880 0.860 0.821 - - - -
+CSA2 0.754 0.820 0.381 0.886 0.772 0.907 0.881 0.859 0.835 - - -
+PIX 0.707 0.854 0.123 0.896 0.669 0.885 0.901 0.895 0.841 0.732 - -
+WN 0.729 0.892 0.163 0.925 0.678 0.873 0.915 0.902 0.830 0.737 0.909 -
+CB 0.604 0.854 0.138 0.914 0.624 0.848 0.852 0.879 0.854 0.690 0.882 0.539

is joint training [9], [10], which combines all training data and
retrains the model from scratch. However, this methodology is
very inefficient. Sometimes, due to the storage limitation and
privacy issues, previous data may not be accessible, making
it hard to adopt the joint training strategy. In this paper, we
focus on a more realistic and challenging setting of lifelong
learning for BIQA which requires:

• Striking a balance between stability and plasticity.
Stability refers to the ability to preserve learned knowl-
edge and plasticity denotes the fast adaptation to new
knowledge. An ideal continual learner can achieve a
stability-plasticity trade-off while learning new tasks.

• Unavailability of the previous data source. One cannot
utilize the training data of previous tasks for joint training
or pre-built memory sets to replay when a new task
arrives.

• A single-head architecture that provides task-agnostic
predictions. Multi-head architecture refers to allocating
specific parameters to each task and needs task identity
when testing. In the real world, we cannot accurately
narrate distortion types and expect a deployed model to
well suit for all tasks learned before.

• Handling two level distortion shift (i.e. inner-dataset
distortion shift and cross-dataset distortion shift) si-
multaneously. Task interference may occur when learn-
ing new distortion types within the current dataset or
sequentially learning multiple datasets. We expect a uni-
versal framework to handle both situations.

• Robustness to task permutations. Task order is an
important factor because in some scenarios when the
performance is impaired seriously by a certain task, the
learning of subsequent tasks will be affected. We expect
the model to resist the negative influence of certain tasks
during the whole incremental learning process.

We propose a new Lifelong blind Image Quality Assessment
(LIQA) model aiming to tackle the catastrophic forgetting
of BQIA. Unlike most classification methods that directly
distillate knowledge from the former network, we adopt the
Split-and-Merge strategy to train a single-head regression
network. In the split stage, we first employ a generator with
distortion-specific heads to memorize the data distributions of
each seen distortion type. We split the regression network into
a feature extractor and a prediction head. Instead of generating
pseudo images, we choose to generate pseudo features before
the prediction head [11]. The features are compact image
representations and also the direct inputs of the regression
head. Besides, features have lower dimensions compared with
images (e.g. a 256× 256 image can be embedded into a 512-
dimensional vector) and are easier to be generated when the

training data is limited. The generator is conditioned on the
distortion type and the quality score. It can well control the
category of pseudo features, thus avoiding the potential un-
balanced problem of distortion types and quality ranges. Once
the generator is trained, it can serve as a memory replayer to
replay the generated pseudo features which resemble the real
features of previous distortions. Then, we utilize an auxiliary
multi-head regression network to generate pseudo labels with
respect to the pseudo features of each distortion. In the merge
stage, we distill the knowledge of the auxiliary multi-head
regression network using the pseudo features and the corre-
sponding pseudo labels to build the single-head regression
network, avoiding the error propagation problem caused by
the conflicts among different distortions of the single-head
network. To illustrate the conflicts among different distortions,
we utilize KADID-10K [12] database which contains 25
distortions, and randomly select 7 distortions for training the
initial single-head network. Then we add one new distortion
each task and utilize images of all seen distortions for joint
training. We show the SRCC performance of each distortion at
each task in Table I. We can see that that there exist conflicts
between different distortions. For example, when adding CB,
the performances of CQ, Q, IN and PIX degrade obviously.
Supposing that we distill knowledge from the previous single-
head network instead of the auxiliary multi-head network
at the next task, some previous distortions’ (e.g. CQ, Q,
IN and PIX ) pseudo labels are probably inaccurate due
to forgetting at the completion of the previous task. When
learning a new task, this will cause the continuous performance
drop of these distortions due to error propagation, which is
especially harmful when the task sequence is long. It should
be noted that the Split-and-Merge strategy effectively resists
the negative impact of a certain task (e.g. adding CB) during
the sequential learning process and improves the robustness to
task permutations.

In summary, our contributions are as follows:

• We drill down into the lifelong learning of BIQA and pro-
pose a LIQA framework which can effectively mitigate
the catastrophic forgetting when learning new distortions.

• We adopt the Split-and-Merge strategy to train a single-
head regression network, which can avoid the error prop-
agation problem caused by the conflicts among different
distortions of the single-head network.

• We design a generator that well controls the generation
of pseudo features conditioned on the distortion type and
the quality score. It serves as a memory replayer to con-
solidate the learned knowledge while learning new task,
avoiding the error caused by the unbalanced distribution
of distortion types and quality ranges.
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• We conduct experiments to verify the effectiveness of
LIQA when meeting with inner-dataset distortion shift
on KADID-10K [12], and cross-dataset distortion shift
on multiple datasets covering three synthetic datasets
(LIVE [13], CSIQ [14] and KADID-10K [12]) and three
authentic datasets (BID [15], CLIVE [16] and KonIQ-
10K [17]).

The remaining parts of this paper are organized as: We
review related work in Section II. In Section III, we introduce
background knowledge. Our approach is presented in Section
IV and experimental results are reported in Section V. We con-
clude our work and discuss several future directions in Section
6. Our codes will be available to the research community at
http://staff.ustc.edu.cn/∼chenzhibo/resources.html.

II. RELATED WORKS

A. Blind image quality assessment

Unlike full-reference quality assessment methods that have
access to full reference information [18]–[20], BIQA aims
to automatically predict the subjective quality of a distorted
image without accessing to the reference information. It can
be roughly divided into two categories: distortion-specific and
general-purpose approaches [21]. Distortion-specific methods
are designed for a particular distortion type (e.g. blur [22],
dehazing [23] and super-resolution [24], [25]). These methods
deliver a poor generalization ability to other distortion types
and can only be tested when the distortion type is known.
In contrast, general-purpose methods that can perform across
various distortion types are more practical. BRISQUE [26]
utilizes statistics measured in the spatial domain and employs
a generalized Gaussian distribution (GGD) model to capture
various distorted image statistics. Yang et al. [27] proposed
an unsupervised feature extraction approach for BIQA based
on Karhunen-Loéve transform (KLT). Li et al. [28] utilized
statistical structural and luminance features (NRSL) for BIQA.
Freitas et al. [29] employed the statistics of the orthogonal
color planes pattern (OCPP) descriptor to characterize image
quality. Apart from the above-mentioned handcrafted features,
there are many learning-based BIQA methods [30], [31] that
usually follow a two-step network, i.e., feature extraction and
quality prediction. In [32], Zhang et al. proposed a deep bilin-
ear model that works for both synthetically and authentically
distorted images. Recently, improving the training strategy of
BIQA has become popular. Gao et al. [33] exploited preference
image pairs to address the problem of insufficient training data.
In [9], Zhang et al. learned data uncertainty and trained a deep
neural network over massive image pairs by minimizing the
fidelity loss. In [10], Zhang et al. further used the uncertainty
training strategy and developed UNIQUE, which can obtain
better generalization ability in the cross-database setting.

Although these BIQA methods have achieved great success,
they obtain static models which lack the ability to evolve with
unseen distortions. In contrast, our work tries to explore the
sustainable learning ability of BIQA networks and thus helps
BIQA networks to accumulate new knowledge and retain the
learned knowledge at the same time.

B. Lifelong learning

Lifelong learning is also referred to as incremental learning
or continual learning. The major challenge is to learn without
catastrophic forgetting: performance on a previously learned
task should not significantly degrade over time as new tasks
are added. This is a direct result of a more general problem in
neural networks, namely the stability-plasticity dilemma [34],
where plasticity represents the ability to integrate new knowl-
edge and stability requires that performance on previously
learned tasks should not significantly degrade over time as
new tasks are added. Recent works to overcome catastrophic
forgetting can be roughly divided into three categories: regular-
ization methods, parameter isolation methods [35] and replay
methods. Prior-focused regularization-based approaches, such
as EWC [36], online EWC [37] and SI [38], usually add a
regularization term that discourages the alteration to weights
important to previous tasks, which effectively prevents old
knowledge from being erased or overwritten. Data-focused
regularization-based methods, such as LWF [39], LFL [40]
and DMC [41], employ a distillation loss to encourage the
responses to previous tasks remain unchanged. Parameter
isolation methods allocate task-specific parameters. One can
dynamically accommodate new branches while freezing previ-
ous task parameters if there are no constraints on network size
[42], [43]. When the architecture remains static, parameters
of fixed parts are allocated to different tasks. HAT [44] learns
hard attention masks to each task at the unit level. PackNet
[45] iteratively assigns parameter subsets to consecutive tasks
by constituting binary masks. Replay methods such as iCaRL
[46] and ER [47] use representative samples selected from
the small memory set while learning a new task. Due to the
storage and privacy issues, the previous training data may be
unavailable. Therefore, some replay methods such as DGR
[48], PR [49], GFR [11] and BIR [50] utilize Generative
Adversarial Network (GAN) to generate pseudo images or
features to consolidate the learned knowledge.

Except for high-level classification tasks, lifelong learning
has been applied to low-level tasks [51]–[53]. LIRA [51]
adopts dynamic neural growing and pseudo image replay
strategy to handle the lifelong learning of image restoration
from unknown blended distortions. PIGWM [52] utilizes a
parameter importance guided weights modification approach
to address the lifelong learning of image de-raining. LWF-AW
[53] is inspired by UNIQUE [10] and LWF [39]. It focuses
on the continual learning of different IQA datasets. In this
paper, we focus on a more general lifelong learning setting.
We expect the model to handle both the inner-dataset distortion
shift and the cross-dataset distortion shift. Actually, it still
remains a challenge for the BQIA due to the particularity of
quality assessment. First, the size of IQA datasets is limited.
Second, the quality label of IQA is continuous instead of
discrete like classification. It lacks the obvious boundaries
of data due to the low aggregation of data especially for
the authentically distorted images. In this case, we take steps
toward the lifelong learning of BIQA and try to find a suitable
way for BIQA networks to continually learn.
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III. PRELIMINARIES

A. Problem definition

Lifelong learning [35], [54] usually considers a sequence
of tasks, receiving training data of just one task at a tome
to perform training until convergence. Data (X T ,YT ) is
randomly drawn from distribution DT , with (X T a set of
data samples for task T , and (YT the corresponding ground
truth labels. The goal is to control the statistical risk of all
seen tasks given limited or no access to data (X T ,YT ) from
previous tasks t < T :

T∑
t=0

E(X t,Yt)

[
ℓ
(
ft

(
X t; θ

)
,Yt

)]
, (1)

with loss function ℓ, parameters θ, and ft representing the
network function for t-th task .

In this paper, we first define a task sequence T = {Tt}Nt=0,
where T0 is the base task and N denotes the total number of
novel tasks. Each task Tt consists of a set of new distortion
types. During learning current task TT , we can only get access
to training data DT = (X T ,ST ) = {(xT

i , s
T
i )}

nT
i=1, where xT

i

represents the distorted image, sTi represents the ground truth
perceptual quality score and nT denotes the number of the
T -th task’s training data. For any t1 ̸= t2, Dt1 ∩ Dt2 = ∅.
T0 is denoted as a base task, which consists of M0 distortion
types. Supposing the total number of distortion types as Mall,
we can sequentially add ∆ = Mall−M0

N distortion types per
task, resulting in N novel tasks (i.e. T1 − TN ). We can say
that the incremental step is equal to ∆. After the model has
incrementally been trained up to T -th task (T > 0), we denote
Mcur = M0 +∆ ∗ T as the number of distortion types seen
so far and denote Mpre = M0 +∆ ∗ (T − 1) as the number
of all previously seen distortions before learning the current
task.

B. Evaluation metrics

For all experiments, we specially design two evaluation
metrics for lifelong learning of BIQA: Correlation Index (C)
and Forgetting Index (F), following the previous works [55],
[56].

Correlation Index (C) After learning the T -th task, we
evaluate the average Spearman’s Rank-order Correlation Co-
efficient (SRCC) between the predicted quality scores and
the MOS/DMOS on the held-out test images of each seen
distortion type. The correlation index CT is defined as CT =

1
Mcur

Mcur−1∑
j=0

abs(SRCCT ,j), which is within the range of [0,

1]. The higher value means the better consistency with human
opinions of perceptual quality.

Forgetting Index (F) We define the forgetting degree of a
particular distortion as the difference between the maximum
performance of this distortion through out the learning process
in the past and the performance the current model has about
it. The forgetting of the j-th distortion after the model has
incrementally been trained up to T -th task can be defined as:

fT
j = max

t∈{0,...,T −1}
abs(SRCCt,j)− abs(SRCCT ,j) (2)

where T > 0, j ∈ [0,Mpre) and fT
j ∈ [−1, 1]. abs(·) denotes

the absolute value function. We can average the forgetting
of all previously seen distortions and obtain the forgetting

index FT = 1
Mpre

Mpre−1∑
j=0

fT
j . Lower FT means less forgetting

and better stability. Especially, when FT < 0, it means that
the current task not only cannot impair the previous learned
knowledge but also can contribute to the performance of
previous tasks.

IV. APPROACH

A. Network architecture of LIQA

The framework of LIQA consists of four parts: a single-head
regression network R, an auxiliary multi-head regression net-
work R̂, a generator G and a discriminator D. For the single-
head regression network, we employ a pre-trained ResNet-18
(without the final FC layers) as the feature extractor U and
use two FC −ReLU layers followed by a Sigmoid function
as the prediction head V . The auxiliary multi-head regression
network has distortion-specific prediction heads V̂ Mall−1

j=0 and
the architecture of the feature extractor Û is the same as that
of the single-head regression network’s.

The architectures of the generator and the discriminator
are shown in Fig. 2. Instead of sampling noise vector form
the standard normal prior N (0, I), we sample noise vector
z̃j from N (µj ,σ

2
j ), where µj and σj are trainable mean

and standard deviation for the distortion j. We adopt the
reparameterization trick [57] to generate z̃j . z̃j = µj+σj⊙z,
where z ∼ N (0, I) and ⊙ signifies the element-wise product.
This makes it possible to generate distortion-specific features
by restricting the sampling of the noise vector from the corre-
sponding distribution. The generator consists of two parts: the
shared embedding layers EG which embed the noise vector
to a latent vector and the distortion-specific generation head
Gj which takes in the summation of the latent vector and
the quality score to generate quality-related distortion-specific
pseudo features h̃j .

Quality score

Generator Discriminator

Real/Fake

Fig. 2: Architectures of the generator and the discriminator.

The discriminator consists of three parts: the shared em-
bedding layers ED which embed the input feature vector to a
latent vector, the distortion-specific quality prediction heads Pj

which regresses the latent vector into a quality score s̃jand the
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distortion-specific discrimination head Qj which tells whether
the input feature is real or fake.

Generally speaking, the generator is conditioned on the
distortion index j and the quality score s, which can be
denoted by h̃j = G(z, s, j). The discriminator takes in the
pseudo/real feature h̃j/hj together with the distortion index
j, which can be denoted by (s̃j , ṽj) = D(h̃j/hj , j).

B. Training strategy

The whole framework of LIQA is shown in Fig. 3. In
the merge stage, we train the single-head regression network
with the pseudo features replaying. In the split stage, we
incrementally train the generator and the discriminator and
then train the auxiliary multi-head regression network to learn
each seen distortion type separately.

1) Training single-head regression network: Let us denote
the current task by TT . The generator and the discriminator
trained at the split stage at the former task is GT −1 and DT −1.
The feature extractor and the prediction head of the current
single-head network RT is UT and VT respectively. The pre-
diction heads of the auxiliary multi-head regression network
trained at previous tasks are V̂jt<T , where the subscript jt<T
denotes the index of the distortions at task Tt<T .

Training the feature extractor. Instead of freezing some
layers of the feature extractor like [40], we fine-tune all the
parameters of the feature extractor. Moreover, we employ fea-
ture distillation loss to prevent the forgetting of old knowledge
and guarantee the stability of the feature extractor. The feature
distillation loss during task TT is defined as:

LFD
T = Ex∼XT [∥UT (x)− UT −1(x)∥2] , (3)

which is used to constrain that the features extracted by UT
do not drift far away from that by UT −1.

Training the prediction head. For training the prediction
head, we employ pseudo replay loss to consolidate the knowl-
edge of previous distortions and use L2 loss to learn the new
distortions arriving at TT . Given a random quality score s̄,
a random noise z and the distortion index jt<T , GT −1 can
generate the pseudo quality-related feature of distortion jt<T :
h̃jt<T = GT −1(z, s̄, jt<T ). The pseudo replay loss can be
defined as:

LPR = Ez∼N (0,1),s∼S̄,j∼pjt<T

[∥∥∥V̂j(h̃j)− VT (h̃j)
∥∥∥
2

]
, (4)

where h̃j = GT −1(z, s, j). s ∼ S̄ means the quality score
is randomly generated and pjt<T is the distortion index
distribution of previous tasks Tt<T . V̂j is the prediction head
for distortion j of the auxiliary multi-head regression network.
For current task’s training data, we adopt L2 loss for training:

LMSE1
T = E(x,s)∼DT [∥VT (UT (x))− s∥2] (5)

Full objective. In summary, when T = 0, we only have L2

loss for training the single-head regression network:

LTotal
T = LMSE1

T . (6)

During task TT (T > 0), the total training loss is:

LTotal
T = λFDLFD

T + λPRL
PR
T + λMSEL

MSE1
T , (7)

where λFD, λPR and λMSE are hyper-parameters that control
the relative importance of feature distillation loss, pseudo
replay loss and L2 loss respectively.

2) Training generator and discriminator: We freeze the
single-head network trained at task TT and train the generator
GT to continually learn the current task’s feature distribution.
It should be noted that the trainable µjt<T , σjt<T and the
previously learned generation heads Gjt<T of GT are also
frozen. Similarly, the previous quality prediction heads Pjt<T

and discrimination head Qjt<T of DT are frozen.
Adversarial loss. To make the generated pseudo features

indistinguishable from real features, we adopt an adversarial
loss:

Ladv
T =Ex∼XT ,j∼pjt=T

[
logDr/f

T (UT (x), j))
]
+

Ez∼N (0,I),s∼ST ,j∼pjt=T

[
log(1−Dr/f

T (GT (z, s, j), j))
]
(8)

where Dr/f
T is the discrimination head for distortion j which

gives the real/fake probability. GT tries to generate a feature
conditioned on both the quality score s and the distortion index
j, while DT tries to distinguish between the real and the fake
features of distortion j.

Quality prediction loss. To generate pseudo features cor-
responding to the quality score s, we add auxiliary quality
prediction heads on top of the discriminator and impose the
quality prediction loss when optimizing both DT and GT : a
quality prediction loss of real features used to optimize DT ,
and a quality prediction loss of fake features used to optimize
GT . In detail, the former is defined as

Lqua r
T = E(x,s)∼DT ,j∼pjt=T

[
∥Dqua

T (UT (x), j)), s∥2
]
, (9)

where the term Dqua
T represents the quality prediction head

which predicts the quality value. On the other hand, the quality
prediction loss of fake features is defined as

Lqua f
T = Ez∼N (0,I),s∼ST ,j∼pjt=T

[
∥Dqua

T (GT (z, s, j), j), s∥2
]
.

(10)
By minimizing this objective, GT learns to generate quality-

related features for specific distortion.
Alignment loss. During the training process, we synchro-

nize GT with GT −1, which means that the previous distortion
features generated by GT should be the same as that generated
by GT −1. The generator alignment loss is defined as

LGA
T = Ez∼N (0,I),s∼S̄,j∼pjt<T

[
∥GT (z, s, j)− GT -1(z, s, j)∥2

]
.

(11)
Similarly, we also apply alignment loss to the current discrim-

inator, which encourages the quality prediction values and the
real/fake probability towards previous distortion features to be
the same as that of the former discriminator.

L
DA
T =Ez∼N(0,I),s∼S̄,j∼pjt<T

[∥∥∥Dqua
T (h̃

T −1
j , j) − Dqua

T -1 (h̃
T −1
j , j)

∥∥∥
2

]
+

Ez∼N(0,I),s∼S̄,j∼pjt<T

[∥∥∥Dr/f
T (h̃

T −1
j , j) − Dr/f

T -1 (h̃
T −1
j , j)

∥∥∥
2

]
,

(12)

where h̃T −1
j = GT −1(z, s, j) denotes the pseudo features of

distortion j generated by GT −1.
Full objective. When T > 0, the objective functions to

optimize GT and DT are written respectively as:

LG
T = −Ladv

T + λquaL
qua r
T + λalignL

GA
T , (13)

LD
T = Ladv

T + λquaL
qua f
T + λalignL

DA
T , (14)
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Pseudo replay loss L2 loss

Feature distillation loss

GAN loss
Discriminator 

alignment loss

Generator 

alignment  loss

L2 loss

task’s Merge stage task’s Split stage

Training generator and discriminator Training auxiliary multi-head regression networkTraining single-head regression network

Pseudo data stream

Real data stream

Weight initialization

Frozen

Trainable

Fig. 3: Framework of LIQA. LIQA adopts Split-and-Merge distillation strategy to build the single-head regression network. U
and Û are the feature extractor of the single-head regression network and the multi-head regression network. V and V̂ are the
prediction head of the single-head regression network and the multi-head regression network. G is the generator and D is the
discriminator. z, s and j denote the random noise vector, the quality score and the distortion index respectively.

where λqua and λalign are hyper-parameters controlling the
relative importance of quality prediction loss and alignment
loss, compared to the adversarial loss. When T = 0, we do
not have the alignment loss item.

3) Training auxiliary multi-head regression network: The
feature extractor ÛT of the multi-head regression network R̂T
is initialized with the feature extractor UT of the single-head
network RT . The training objective is defined as:

LMSE2 = E(x,s)∼DT ,j∼pjt=T

[∥∥∥R̂T (x, j), s
∥∥∥
2

]
, (15)

where the feature extractor ÛT and the previous distortions’
prediction heads V̂jt<T of R̂T are frozen and only the current
task’s distortion prediction heads V̂jt=T are trainable.

V. EXPERIMENTS

A. Datasets

Following work [10], we conduct experiments on six IQA
datasets, among which three are synthetically distorted (LIVE
[13], CSIQ [14], KADID-10K [12]) and the others are authen-
tically distorted (BID [15], CLIVE [16] and KonIQ-10K [12]).
The summarization of the six datasets is shown in Table II.

The LIVE database includes 779 synthetically distorted
images, which are generated from 29 reference images by
corrupting them with five distortion types, i.e. JPEG-2000
compression, JPEG compression, white Gaussian noise, Gaus-
sian blur, and fast fading rayleigh at five to eight intensity
levels. DMOS of each distorted image ranges from 1 to
100 and is collected using the single stimulus continuous
quality rating method. The CSIQ database consists of 866
synthetically distorted images which are derived from 30
original images distorted with six distortion types at four to

five different intensity levels. The distortions are JPEG com-
pression, JPEG-2000 compression, global contrast decrements,
additive pink Gaussian noise, additive white Gaussian noise,
and Gaussian blurring. The ratings are reported in the form
of DMOS ranging from 0 to 1 using multi-stimulus absolute
category rating method. KADID-10K consists of 10,125 dis-
torted images derived from 81 pristine images considering 25
different distortion types at 5 intensity levels. The distortion
types include Gaussian blur (GB), lens blur (LB), motion blur
(MB), color diffusion (CD), color shift (CS), color quantiza-
tion (CQ), two kinds of color saturation (CSA1 and CSA2),
JPEG-2000 compression (JP2K), JPEG compression (JPEG),
white noise (WN), white noise in color component (WNCC),
impulse noise (IN), multiplicative noise (MN), denoise (DN),
brighten (BR), darken (DA), mean shift (MS), jitter (JIT),
non-eccentricity patch (NEP), pixelate (PIX), quantization (Q),
color block (CB), high sharpen (HS), and contrast change
(CC). The MOS of each image ranges from 1 to 5 and is
collected using double stimulus absolute category rating with
crowdsourcing.

The BID database contains 586 authentically distorted pic-
tures taken by human users in a variety of scenes, camera
apertures, and exposition times. The distorted images are
mostly blurred, which not only include typical, easy-to-model
blurring cases but also more complex, realistic ones. The MOS
of each image ranges from 0 to 5 and is collected using
the single stimulus continuous rating method. The CLIVE
database contains 1,162 authentically distorted images cap-
tured from diverse mobile devices. Each image is collected
without artificially introducing any distortions beyond those
occurring during capture, processing, and storage by a user’s
device. The MOS of each image ranges from 0 to 100 and is
collected by the single stimulus continuous quality rating with
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TABLE II: Description of IQA databases. DisNum refers to the number of synthetic distortion types. MOS refers to Mean
Opinion Score and a higher value denotes better perceptual quality. DMOS refers to Differential Mean Opinion Score and is
inversely proportional to MOS. DisImageNum refers to the number of distorted images.

Database Scenario DisNum Subjective Testing Methodology Annotation Range DistImageNum
LIVE [13] Synthetic 5 Single stimulus continuous quality rating DMOS [0,100] 779
CSIQ [14] Synthetic 6 Multi stimulus absolute category rating DMOS [0,1] 866

KADID-10K [12] Synthetic 25 Double stimulus absolute category rating with crowdsourcing MOS [1,5] 10,125
BID [15] Authentic - Single stimulus continuous quality rating MOS [0,5] 586

CLIVE [16] Authentic - Single stimulus continuous quality rating with crowdsourcing MOS [0,100] 1,162
KonIQ-10K [17] Authentic - Single stimulus absolute category rating with crowdsourcing MOS [1,5] 10,073

crowdsourcing. The KonIQ-10K database consists of 10,073
authentically distorted images selected from a massive public
multimedia database, YFCC100m [58]. The MOS of each
image ranges from 1 to 5 and is collected by the single
stimulus absolute category rating with crowdsourcing.

B. Implementation details

In order to test the effectiveness of LIQA facing with inner-
dataset distortion shift, we adopted KADID-10K dataset and
randomly split the 25 distortion types into two groups, i.e.
a base group and a novel group. The base group includes 7
distortion types (CQ, JPEG, CSA1, WNCC, Q, JIT and IN)
and is used for training the base task. The novel group includes
18 distortion types (JP2K, CSA2, PIX, WN, CB, GB, DA, CC,
BR, NEP, MS, MB, MN, LB, DN, HS, CD and CS) and can be
divided into 18, 9 and 3 novel tasks with the incremental step
∆ set to 1, 2 and 6 respectively in our experiments. Then we
randomly permuted the distortions in the novel group to test
the robustness to the distortion order. Moreover, in order to
test the effectiveness of LIQA when facing with cross-dataset
distortion shift, we sequentially add one dataset per task.

Following the work of UNIQUE [10], we randomly sampled
80% images from each dataset for training, 10% for validation
and the left 10% for testing. Specially, for the three synthetic
datasets, we split the datasets according to the reference
images in order to ensure content dependence. During training,
we randomly cropped the images into 300 × 300 and during
validation and testing, we cropped the images to 300×300 in
the center. For each task, we trained the single-head regression
network for 70 epochs, the generator and the discriminator
for 500 epochs and the multi-head regression network for 70
epochs. We adopted an early-stopping strategy and chose the
model that performed the best on the validation set for testing.
Specially, we selected the best-performing network after 15
epochs to make sure the learning of the current task. For
training the generator, we adopted a data augmentation strategy
and expand the size of the original dataset tenfold offline,
because the image for each distortion type are too few to train
a good generator. But for training the regression network, we
adopted the original dataset. Each experiment was run five
times and the results were averaged.

We follow the protocol in [38] and tune hyper-parameters
using coarse grid research strategy on the held-out validation
set with the searching scope set to [0.0001, 0.001, 0.1, 1.0, 3.0,
5.0, 10.0, 20.0]. We select the hyper-parameters that achieve
the best performance during the whole incremental learning
process. Moreover, the optimal parameters are suitable for

both inner-dataset and cross-dataset distortion shift lifelong
learning scenarios. λFD, λPR and λMSE in Eq. 7 are set
to 0.001, 10.0, 1.0 respectively. We set λqua and λalign in
Eq. 13 as well as Eq. 14 to 1.0 and 3.0, respectively. The
learning rate of the feature extractor and the prediction heads
for regression networks was set to 1e−4 when learning the
base task. We lowered down the learning rate of the feature
extractor to 1e−6 when learning the novel tasks. For simplicity,
we linearly re-scaled the subjective scores of each of the six
databases to [0, 1] [10], where higher value denotes better
perceptual quality. The regression networks were trained using
Adam with a batch size of 48 and the buffer size of pseudo
features per batch was set to 1400. To generate pseudo features
for each previous distortion, we split the re-scaled quality
range into five interval segments, i.e. [0, 0.2), [0.2, 0.4),
[0.4, 0.6), [0.6, 0.8), [0.8, 1.0]. For each quality interval, we
allocated 1400/Mpre/5 pseudo features to make sure that the
generated pseudo features can well cover the distribution of
the real features. The generator as well as the discriminator
were trained using Adam with a batch size of 128.

C. Compared methods

Apart from fine-tuning and joint training, we also compare
LIQA with three prior-focused regularization-based lifelong
learning approaches, i.e. EWC [36], online EWC [37] and SI
[38], one data-focused regularization-based method, i.e. LWF
[39] as well as one replay method, i.e. GFR [11]. Besides,
we also show the performance of the auxiliary multi-head
regression network, which is denoted as “LIQA-multihead”
in Fig. 4, Fig. 5, Fig. 6 and Fig. 7. Considering that we
target at task-agnostic predictions, we do not compare LIQA
with parameter isolation methods which require task-specific
parameters and task identity during testing. The regression
networks of all the compared approaches were trained with
Adam with a batch size of 48 and the learning rate of 1e−4. We
chose the best-performed model during validation for testing
as the training process of LIQA.

Fine-tuning (FT): Modifying the parameters of an existing
network to adapt to a new task. At current task TT , we
directly fine-tune the single-head regression network initialized
by RT −1 using the current task’s training data DT . The loss
of FT is defined as:

LFT
T = E(x,s)∼DT [∥RT (x)− s∥2] . (16)

EWC: EWC estimates the importance of parameter i by
the i-th diagonal element of the current task TT ’s Fisher
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Information matrix, the regularization loss is defined as

Lreg−EWC
T =

1

2

T −1∑
t=0

(

Nparams∑
i=1

Ft
ii(θi − θ̂ti)

2
), (17)

where θ̂ti is the value of the parameter i after finishing training
on task Tt. Fii can be calculated by

Ft
ii =

1

|Dt|
∑

(x,s)∼Dt

(
∂L2(Rt(x; θ̂

t), s)

∂θi
)
2
, (18)

where L2 denotes L2 loss function. The full objective of EWC
is:

LEWC
T = LFT

T + λEWCL
reg−EWC
T (19)

In our experiment, we empirically set λEWC to 5000.0 via a
coarse grid search on the held-out validation set following the
work of [38].

Online EWC: The regularization term for online EWC is
given by:

Lreg−onlineEWC
T =

Nparams∑
i=1

F̃T −1
ii (θi − θ̂

(T −1)
i )

2
, (20)

where F̃T −1
ii is a running sum of the i-th diagonal elements

of the Fisher Information matrices of tasks Tt<=T −1, i.e.
F̃T −1

ii = γF̃T −2
ii + FT −1

ii . γ <= 1 is a hyperparameter that
governs the gradual decay of the contributions of previous
tasks. The full objective of online EWC is given by:

LonlineEWC
T = LFT

T + λonlineEWCL
reg−onlineEWC
T . (21)

In our experiment, we empirically set γ to 1 and λonlineEWC

to 5000.0.
SI: SI estimates the importance for each parameter and pro-

tect the parameters important to previous tasks from changing.
SI loss is defined as:

Lreg−SI
T =

Nparams∑
i=1

Ω
(T −1)
i (θi − θ̂

(T −1)
i )

2
, (22)

where θ̂
(T −1)
i is the value of parameter i after finishing

training on task TT −1. Ω
(T −1)
i is the estimated importance

of parameter i for all the previous tasks:

Ω
(T −1)
i =

T −1∑
t=0

ωt
i

(∆t
i)

2
+ ξ

, (23)

where ∆t
i = θ̂i[Niters

t] − θ̂i[0
t], Niters

t is the number of
iterations and θ̂i[0

t] indicates the value of parameter i right
before starting training on task Tt. ξ is a small value (usually
set to 0.1). ωt

i counts the contribution of parameter i to the
change in loss:

ωt
i =

Niters∑
n=1

(θ̂i[n
t]− θ̂i[(n− 1)

t
])
−∂Ltotal[n

t]

∂θi
, (24)

where θ̂i[n
t] denotes the value of the parameter i after the

n-th training iteration.
The full objective of SI is given by:

LSI
T = LFT

T + λSIL
reg−SI
T . (25)

We empirically set λSI to 100.0 in our experiments via a
coarse grid search on the held-out validation set following the
work of [38].

LWF: Using only examples for the new task, knowledge
distillation is used for optimizing new task’s performance
while preserving responses on the previous tasks. The dis-
tillation loss can be calculated by:

LDistill
T = E(x,s)∼DT [∥RT (x)−RT −1(x)∥2] . (26)

The total loss should be of the form:

LLWF
T = LFT

T + λLWFL
Distill
T . (27)

GFR: Generate pseudo features conditioned on the category
labels (discrete) and utilize the generated features paired with
the given hard labels for replaying. To suit for the regression
task, we implement the feature generation process by:

h̃c = G(z, c), (28)

where c = mapping(s, j) and z is drawn from a normalized
Gaussian distribution. mapping denotes a mapping function
which maps the combination of the distortion index j and
the MOS value into a discrete category label. We re-linear
the MOS to [0, 1] and split the quality range into five
interval segments. Therefore, for the inner-dataset distortion
shift experiments, we obtain 125 categories (25×5) in total.
In addition, for the cross-dataset distortion shift experiments,
we obtain 30 categories (6×5). The replay loss is calculated
by:

LReplayGFR = Ez∼N (0,1),c∼pct<T

[∥∥∥c− VT (h̃c)
∥∥∥
2

]
. (29)

The total loss for training the regression network of GFR
can be defined as follows:

LGFR
T = LFT

T + λGFRL
ReplayGFR

T . (30)

Joint training (JT): All the previously learned tasks’
training data is stored and combined with the current task’s
training data for training RT . RT is initialized with RT −1.
The loss of JT is defined as:

LJT
T = E(x,s)∼Dt<=T [∥RT (x)− s∥2] . (31)

It should be noted that JT can be regarded as an upper bound of
lifelong learning methods which are not allowed to get access
to previous training data Dt<T .

D. Performance with respect to inner-dataset distortion shift

We first evaluate the performance of LIQA when faced with
inner-dataset distortion shift on KADID-10K. We respectively
set the incremental step ∆ to 1, 2 and 6 and quantify the
performance by computing the correlation index C and the
forgetting index F of each task. The network is first trained
on the base task which consists of 7 base distortion types and
then sequentially trained on novel tasks.

When the incremental step is set to 1, we sequentially
add 18 novel distortions following the permutation order
of JP2K→CSA2→PIX→WN→CB→GB→DA→CC→BR→
NEP→ MS→ MB→ MN→ LB→DN→HS→ CD→ CS,
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Fig. 4: Performance of inner-dataset distortion shift with incremental step set to 1. (a) Correlation index with respect to tasks.
(b) Forgetting index with respect to tasks.

TABLE III: Performance comparison across various distortion types of KADID-10K at the last task. The best performance of
each distortion among fine-tuning and the lifelong learning methods is highlighted in bold.

CQ JPEG CSA1 WNCC Q JIT IN JP2K CSA2 PIX WN CB GB
FT 0.450 0.530 0.077 0.898 0.678 0.746 0.736 0.270 0.802 0.075 0.838 0.300 0.708

EWC 0.435 0.711 0.065 0.782 0.672 0.635 0.681 0.590 0.653 0.494 0.693 0.380 0.470
Online EWC 0.471 0.782 0.164 0.768 0.697 0.771 0.563 0.679 0.701 0.466 0.575 0.282 0.756

SI 0.235 0.794 0.060 0.710 0.658 0.789 0.454 0.741 0.654 0.433 0.629 0.318 0.870
LWF 0.231 0.415 0.046 0.800 0.590 0.379 0.807 0.360 0.697 0.044 0.697 0.120 0.850
GFR 0.416 0.591 0.012 0.834 0.594 0.680 0.791 0.335 0.745 0.108 0.751 0.231 0.789
LIQA 0.622 0.825 0.403 0.903 0.827 0.864 0.879 0.855 0.791 0.627 0.825 0.341 0.869

JT 0.515 0.814 0.378 0.825 0.398 0.886 0.864 0.851 0.731 0.680 0.796 0.221 0.900
DA CC BR NEP MS MB MN LB DN HS CD CS Avg

FT 0.546 0.136 0.278 0.122 0.402 0.385 0.858 0.814 0.867 0.584 0.483 0.899 0.539
EWC 0.393 0.116 0.597 0.128 0.362 0.230 0.772 0.361 0.829 0.614 0.390 0.887 0.518

Online EWC 0.525 0.035 0.237 0.236 0.325 0.455 0.773 0.620 0.806 0.503 0.573 0.830 0.544
SI 0.516 0.115 0.458 0.162 0.366 0.618 0.770 0.764 0.797 0.561 0.589 0.950 0.560

LWF 0.327 0.102 0.270 0.161 0.300 0.512 0.776 0.854 0.836 0.187 0.431 0.850 0.466
GFR 0.492 0.051 0.340 0.264 0.318 0.363 0.869 0.790 0.900 0.275 0.560 0.896 0.519
LIQA 0.522 0.047 0.549 0.214 0.373 0.579 0.917 0.786 0.949 0.783 0.519 0.669 0.665

JT 0.357 0.123 0.711 0.283 0.047 0.900 0.807 0.854 0.858 0.844 0.728 0.797 0.647

leading to 18 novel tasks. The correlation index and the
forgetting index with respect to tasks are shown in Fig. 4(a)
and Fig. 4(b) respectively, from which we can see that both
the correlation index and the forgetting index of fine-tuning
are very unstable and the performances of previous tasks are
easily influenced by the current task. Actually, setting the
incremental step to 1 is hard for the network to continually
learn new knowledge. It is because that the number of per
distortion’s training data is limited (only 325 images). Fine-
tuning the network on such limited training data will cause
the over-fitting problem and make the network easily be
biased towards the current distortion. Intuitively, the network
generalization ability will be impaired and the performances
of the previously seen distortions will be influenced. When the
current distortion distribution varies greatly from the previous
distortions, the performance of previous distortions will drop
drastically. When the current distortion distribution resembles
some previous distortions’, the performance of previous dis-
tortion may not undergo drastic changes. Taking the task#5
for example, when sequentially adding the training data of
CB, the performance of the most distortions will be seriously
impaired for fine-tuning. The correlation index of task#5 drops
from 0.636 to 0.386 and the forgetting index increases from
0.198 to 0.437 compared with task#4. It is because that CB is

a local distortion, whose distortion distribution varies greatly
from that of the previously seen global distortions. Directly
fine-tuning the network parameters on the training data of CB
will make the network biased towards the currently learning
distortion, leading to catastrophic forgetting of other distortion
types. In contrast with fine-tuning, lifelong learning methods
apparently mitigate the catastrophic forgetting phenomenon at
task#5. For EWC, online EWC, SI, LWF, GFR and LIQA,
the forgetting index is reduced to 0.213, 0.153, 0.179, 0.273,
0.211 and 0.179, respectively.

Taking a look at the whole incremental learning process, we
can find that the performance of LIQA keeps stable while the
performances of other lifelong learning methods will change
drastically at certain task session. Taking task#11 (adding MS)
for example, the correlation index of EWC, online EWC and
SI even cannot catch up with that of fine-tuning. In contrast,
LIQA which takes advantages of replaying pseudo features
to consolidate the learned knowledge of previously learned
distortions, can well resist the negative effect of certain task
and obtain better robustness and stability when facing with
inner-dataset distortion shift. Without access to the previous
training data, LIQA can obtain comparable performance with
joint training. Moreover, one thing that should be noted is that
even if joint training utilizes training data of all seen task,
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adding new distortion type will also bring slight forgetting of
previous distortion types, due to the conflict between different
distortion types.

The SRCCs of each distortion type at the final task with
incremental step set to 1 are listed in Table III, from which
we can see that the performances of most distortions of LIQA
outperform that of the other lifelong learning methods. By
comparing LIQA with joint training, we can find that the
performances of some distortions (i.e. CQ, JPEG, CSA1,
WNCC, Q, IN, JP2K, CSA2, WN, CB, DA, MS, MN, DN)
are better than that of joint training and the average SRCC of
all seen distortions is also better than that of joint training.
The performance of the final task illustrates that LIQA has
better ability to preserve the previously learned knowledge
(the performances of the 7 base distortions of LIQA are
comparable with that of joint training). Besides, consolidating
the learned knowledge does not interfere with the learning of
new knowledge (the performances of the novel distortions are
satisfactory).

When the incremental step is set to 2, we add two distor-
tions per task following the order of (JP2K, CSA2)→(PIX,
WN)→(CB, GB)→(DA, CC)→(BR, NEP)→(MS, MB)→
(MN,LB)→(DN, HS)→(CD, CS), leading to 9 novel tasks.
The correlation index and the forgetting index with respect to
tasks are shown in Fig. 5(a) and Fig. 5(b) respectively. By
comparing Fig. 5(a) with Fig. 4(a), we can find that when
each task contains 2 distortions, the catastrophic forgetting of
fine-tuning becomes less serious. The worst correlation index
of fine-tuning in Fig. 5(a) is 0.47 while the worst correlation
index of fine-tuning in Fig. 4(a) is 0.30. The biggest forgetting
index in Fig. 5(b) of fine-tuning decreases from 0.48 to 0.30
compared with Fig. 4(b). It is because that the negative effect
of certain distortion will be weaken by another distortion.
Taking the task#3 in Fig. 5(a) for example, combination of CB
and GB will not seriously impair the performance of previous
distortions. By comparing the forgetting index of all methods
shown in Fig. 5(b), we can find that the forgetting of LIQA is
low and stable, and can well preserve the learned knowledge
while learning new tasks. In contrast, the forgetting indexes
of EWC, online EWC, SI, LWF and GFR are unstable and
sometimes very high (e.g. task#6 and task#8).

When the incremental step is set to 6, we add six distortions
per task following the order of (JP2K, CSA2, PIX, WN, CB,
GB)→(DA, CC, BR, NEP, MS, MB)→ (MN, LB, DN, HS,
CD, CS), leading to 3 novel tasks. The correlation index and
the forgetting index with respect to tasks are shown in Fig. 6(a)
and Fig. 6(b) respectively. From Fig. 6(a) we can observe that
the performance gap between fine-tuning and lifelong learning
methods further shrinks. By comparing Fig. 5(b) and Fig. 6(a),
we can find that the biggest forgetting index of fine-tuning at
certain task session further decreases from 0.30 to 0.19. It is
because that as the distortion types and the number of the
training data increases, the network generalization ability is
also improved. The catastrophic forgetting caused by certain
distortion will be further suppressed.

To sum up, when the incremental step is set to 1, catas-
trophic problem will easily emerge. It is because the limited
training data of certain distortion will make the network

parameters over-fitted to the current task and destroy the
generalization ability of the network. As the incremental step
increases, the catastrophic forgetting of fine-tuning will be
mitigated because the generalization ability is also improved.
EWC, online EWC, SI, LWF and GFR can mitigate the
catastrophic forgetting to some extent but the performance is
unstable. By comparing Eq. 26 and Eq. 16, we can find the two
optimization objectives are contradictory. Unlike classification
tasks distilling the knowledge from multiple previous proba-
bility values separately, the quality regression network only
has one scalar output value. Therefore, directly applying the
idea of LWF to BIQA does not work. As for GFR, the way of
generation conditioned on the discrete labels cannot produce
accurate pseudo features. Besides, using the pseudo features
paired with inaccurate hard pseudo labels further hinders its
performance. In contrast, LIQA employs auxiliary multi-head
regression network to generate soft pseudo labels. It can
weaken the dependency to the accuracy of pseudo features and
can strike a good balance between the stability and plasticity.
Moreover, we should notice that the performance of the multi-
head auxiliary network is already comparable even better than
joint training, by only using the L2 loss. It is because that
joint training adopts single-head network, which will cause
the conflicts of different distortions. In contrast, the auxiliary
multi-head network assigns specific head for each distortion
type, avoiding the conflicts among distortions. LIQA distills
knowledge from multi-head network and thus can achieve
comparable performance compared with joint training.

E. Performance with respect to cross-dataset distortion shift

Inspired by the experimental results of UNIQUE [10], we
can observe that directly linearly re-scale the subjective scores
to a normalized range can generally obtain good performance
when combining different datasets. Therefore, here we do not
pay attention to designing a better algorithm to overcome the
perceptual scale mismatch between different task. Instead, we
adopt the linearly re-scaling strategy for simplicity and focus
on the performance comparison with other lifelong learning
methods under the same experimental setup.

To evaluate the performance of LIQA when faced
with cross-dataset distortion shift, we conduct experi-
ments on six IQA datasets following the permutation or-
der of LIVE→CSIQ→BID→CLIVE→KonIQ-10K→KADID-
10K. We regard the LIVE dataset as the base dataset and
the other five datasets as novel datasets. This setting covers
datasets from both the same and different distortion scenarios.
Considering that the authentic dataset cannot identify the
distortion types, We regarded each dataset as a whole and
trained LIQA with the incremental step to 1. The correlation
index and the forgetting index are shown in Fig. 7(a) and
Fig. 7(b) respectively. From Fig. 7(a) we can see that the shift
from LIVE to CSIQ does not bring apparent forgetting for fine-
tuning. It is because that LIVE and CSIQ both include synthet-
ically distorted images and have 4 overlapped distortion types
(JPEG-2000 compression, JPEG compression, white Gaussian
noise and Gaussian blur). However, when adding BID dataset
which includes authentically distorted images, the forgetting
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Fig. 5: Performance of inner-dataset distortion shift with incremental step set to 2. (a) Correlation index with respect to task
session. (b) Forgetting index with respect to task session.
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Fig. 6: Performance of inner-dataset distortion shift with incremental step set to 6. (a) Correlation index with respect to tasks.
(b) Forgetting index with respect to tasks.

indexes of fine-tuning and all the lifelong learning methods
become apparent. It is known that the data distribution of
BID dataset varies greatly from that of LIVE and CSIQ,
and the apparent change makes the network biased towards
the currently learning dataset, thus impairs the generalization
ability towards other datasets. Similarly, we can find from Fig.
7(b) that the forgetting index increases during the shift from
authentic dataset to synthetic dataset (i.e. task#5). Taking a
look at the whole incremental learning process, we can find
that LIQA obtains more stable performance compared with
other lifelong learning methods and can effectively mitigate
the forgetting in the face of the apparent cross-dataset dis-
tortion shift (e.g. LIQA reduces the forgetting at task#2 and
task#5 compared with EWC, online EWC, SI, LWF and GFR).
The performances of each dataset at the final task are listed
in Table IV. From the table, we have several observations:

(1) LIQA aims to achieve the global optimal solution instead
of the optimal performance of each dataset.

(2) EWC discourages the parameters important for the pre-
vious task from changing, which can achieve better
performance when the two adjacent tasks are similar. It is
because that when the next task is similar to the previous
task (e.g. LIVE and CSIQ are both synthetic datasets and
share 4 same distortions), it can utilizes the useful prior
knowledge for training. However, when the two adjacent

tasks are obviously different, EWC will fail (e.g. CSIQ
is a synthetic dataset and BID is an authentic dataset).

(3) LWF uses the distillation loss Eq. 26 to distill the
knowledge from the last single-head network. It uses the
last network to generate the pseudo labels of the current
task. Therefore, the last task’s knowledge can be better
preserved (KADID-10K is the finally learned dataset and
KonIQ-10k is the last learned dataset). However, the
performance of history tasks cannot be well preserved
compared with the last task (the performance of the first
learned dataset LIVE is the worst among all methods).
In contrast, LIQA uses pesudo features of all previously
learned datasets for distilling knowledge.

(4) For FT, it uses images from KADID-10K for training
without considering the stability of previously learned
datasets, thus overfitting to the finally learned dataset.
For lifelong learning methods, guaranteeing the stability
of previous knowledge will impair the plasticity slightly,
so the performance of KADID-10K will be lowered to
some extent.

Specially, we should note that the addition of KADID-10K
impairs the performance of previous datasets even if we adopt
joint training. It is because that the image number of KADID-
10K is far larger than most of the datasets, the unbalanced
data distribution of different datasets impairs the optimal per-
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formance of each dataset. To verify the conjecture, we equip
the joint training with pesudo replay, which generates equal
number of pseudo features for each dataset. By comparing the
results of “JT” and “JT+PR”, we can find that the performance
of each dataset is improved by utilizing pseudo features. It
further verifies that pseudo features can address the unbalanced
problem to some extent by controlling the quality range and
the dataset.

TABLE IV: Performance comparison across various datasets
at the last task session. The best performance of each dataset
among fine-tuning and the lifelong learning methods is high-
lighted in bold. JT+PR denotes joint training equipped with
pseudo features replaying.

LIVE CSIQ BID CLIVE KonIQ-10K KADID-10K avg
FT 0.819 0.663 0.398 0.298 0.573 0.942 0.615

EWC 0.829 0.760 0.501 0.472 0.658 0.916 0.689
Online
EWC 0.813 0.718 0.514 0.460 0.659 0.918 0.680

SI 0.820 0.725 0.580 0.453 0.699 0.900 0.696
LWF 0.784 0.721 0.635 0.497 0.730 0.905 0.712
GFR 0.799 0.702 0.484 0.301 0.652 0.941 0.647
LIQA 0.844 0.705 0.642 0.572 0.713 0.898 0.729

JT 0.886 0.937 0.663 0.581 0.778 0.921 0.794
JT+PR 0.929 0.962 0.690 0.735 0.808 0.937 0.844

F. Analysis and discussions

We first conduct ablation study to verify the effectiveness
of each key component of LIQA. Then we further discuss the
memory replay and the robustness to task permutations. In
this part, we follow the experimental setting in Section V-D
with the incremental step set to 1 regarding the inner-dataset
distortion shift, and follow the experimental setting in Section
V-E regarding the cross-dataset distortion shift.

1) Ablation study: We conduct experiments to verify the
effectiveness of the Split-and-Merge distillation strategy as
well as the feature distillation loss and the pseudo replay loss
in Eq. 7. Specially, to verify the effectiveness of the Split-and-
Merge distillation strategy, we replace the LPR defined in Eq.
4 with:

LPR = Ez∼N (0,1),s∼S̄,j∼pjt<T

[∥∥∥VT −1(h̃j)− VT (h̃j)
∥∥∥
2

]
,

(32)
where VT −1 denotes the single-head regression network
trained at the former task.

We implement three variants of LIQA and average the
correlation indexes and the forgetting indexes over all tasks
to represent the overall performance during the whole in-
cremental learning process, which are denoted as C̄ and F̄
respectively. The comparison results of the three variants of
LIQA as well as LIQA under inner-dataset distortion shift are
shown in Table V. From the table we can see that pseudo
replay plays a significant role in LIQA. Besides, without the
Split-and-Merge strategy, C̄ drops and F̄ increases. It is due to
that the pseudo labels given by the former single-head network
are inaccurate when the former task has negative effect on
most of the learned distortions (e.g. task#5). Directly distilling
knowledge from the inaccurate single-head network will lead
to the error-propagation problem thus hindering the consoli-
dation of the previous distortions. In contrast, LIQA preserves
the response of each previously learned distortion by the

auxiliary multi-head regression network and resists the error-
propagation problem. The feature distillation loss constrains
that the features extracted by the current feature extractor VT
do not shift away from that by VT −1. The generator replays
the pseudo features that resemble the data distribution of the
features generated by VT −1 and the regression head is trained
with the pseudo features. The drastic change of the features
will lead to the mismatch between the real features of the
previous distortions and the regression head trained with the
pseudo features when testing. As shown in Table V, the C̄ of
LIQA w/o FD drops and F̄ increases compared with LIQA.

TABLE V: Average correlation index and average forgetting
index of different variants of LIQA. FD represents feature
distillation and PR represents pseudo replay.

w/o Split-and-Merge w/o FD w/o PR LIQA
C̄ 0.624 0.658 0.566 0.695
F̄ 0.117 0.089 0.214 0.087

2) Memory replay: We further explore the memory replay
strategy and the size of the replay buffer per batch under inner-
dataset distortion shift. The average correlation index and
the average forgetting index across tasks are shown in Table
VI. Suppose that the allocated replay buffer size is denoted
as Nbuf per batch, and the number of the previously seen
distortions is denoted as Mpre. The re-scaled quality score is
within the range of [0, 1]. We split the re-scaled quality range
into five interval segments, i.e. [0, 0.2), [0.2, 0.4), [0.4, 0.6),
[0.6, 0.8), [0.8, 1.0].

TABLE VI: Average correlation index and average forgetting
index for different replay strategies and different replay buffer
sizes.

Replay strategy Replay buffer size

Random Qua Dist Qua
&Dist 350 700 1400 2800

C̄ 0.635 0.689 0.646 0.695 0.651 0.687 0.695 0.697
F̄ 0.112 0.072 0.075 0.087 0.092 0.076 0.087 0.081

We design four variants of replay strategy according to
the two conditions of the generator: the quality score and
the distortion type. The first variant is the random replay,
which means that the pseudo features are generated given
the random quality score chosen from the range of [0, 1]
and the random distortion type chosen from the previously
learned distortions (corresponding to Random in Table VI).
The second variant is to control the quality score and allocate
Nbuf/5 pseudo features to each of the five interval segments
(corresponding to Qua in Table VI). The distortion type is
randomly chosen from the previously seen distortions. The
third variant is to control the distortion type and allocate
Nbuf/Mpre pseudo features to each of the seen distortions
(corresponding to Dist in Table VI). The quality score is
randomly chosen from the range of [0, 1]. The fourth variant is
the method that LIQA adopts (corresponding to Qua&Dist in
Table VI). We allocate Nbuf/Mpre/5 pseudo features to each
seen distortion each quality interval segment. From Table VI
we can see that the performance of Qua&Dist outperforms
that of Random, Qua and Dist. It demonstrates that by well
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Fig. 7: Performance of cross-dataset distortion shift with incremental step set to 1. (a) Correlation index with respect to tasks.
(b) Forgetting index with respect to tasks.

controlling the distortion type and the quality range of the
generated pseudo features, LIQA can avoid the unbalanced
distribution and enhance the consolidation of the knowledge
of learned distortions.

Moreover, we explore the effect of the replay buffer size
per batch Nbuf . As shown in Table VI, as the Nbuf increases,
the performance improves. Considering the balance between
the performance and the complexity, we set Nbuf to 1400 in
LIQA.

3) Robustness to task permutations: To verify the robust-
ness to different task permutations of LIQA, we conduct exper-
iments of different task permutation orders under inner-dataset
distortion shift and cross-dataset distortion shift respectively.
For the inner-dataset distortion shift, we randomly permute the
order of the 18 novel distortions and generate 5 different task
orders.

• Order1: JP2K→CSA2→PIX→WN→CB→GB→DA→CC→
BR→NEP→MS→MB→MN→LB→DN→HS→CD→CS

• Order2: PIX→MS→CD→CS→HS→MB→CSA2→WN→DN
→BR→NEP→MN→CB→DA→CC→LB→GB→JP2K

• Order3: MB→DA→CD→MN→JP2K→GB→CC→BR→HS
→DN→NEP→CS→CB→MS→LB→PIX→WN→CSA2

• Order4: CD→CC→HS→DN→BR→CSA2→LB→MS→JP2K
→CB→GB→DA→MB→CS→NEP→WN→MN→PIX

• Order5: WN→CSA2→DA→NEP→MN→LB→PIX→GB
→CS→CD→JP2K→CB→DN→HS→BR→MB→CC→MS

For the cross-dataset distortion shift, we randomly permute
the order of the 5 novel datasets and generate 5 different task
orders:

• Order1: CSIQ→BID→CLIVE→KonIQ-10k→KADID-10K
• Order2: CLIVE→CSIQ→KADID-10K→BID→KonIQ-10K
• Order3: KADID-10K→BID→CSIQ→KonIQ-10K→CLIVE
• Order4: KonIQ-10K→KADID-10K→CLIVE→CSIQ→BID
• Order5: CSIQ→BID→KADID-10K→CLIVE→KonIQ-10K

We compute the average correlation index and the average
forgetting index across all tasks. The results are shown in
Table VII and Table VIII. Order1 denotes the default order in
Section V-D and Section V-E. From Table VII and Table VIII,
we can see that the performances of different task permutations
vary slightly, which illustrates that LIQA has good robustness
to task permutations, benefiting from the Split-and-Merge
distillation strategy which resists the negative effect of certain
task during the whole incremental learning process.

TABLE VII: Average correlation index and average forgetting
index for different task permutations under inner-dataset dis-
tortion shift

.
Order1(default) Order2 Order3 Order4 Order5

C̄ 0.695 0.674 0.698 0.694 0.710
F̄ 0.087 0.070 0.082 0.113 0.086

TABLE VIII: Average correlation index and average forget-
ting index for different task permutations under cross-dataset
distortion shift.

Order1(default) Order2 Order3 Order4 Order5
C̄ 0.817 0.791 0.813 0.799 0.812
F̄ 0.0867 0.123 0.104 0.118 0.102

4) Comparison with state-of-the-art BIQA methods: We
compare LIQA with three SOTA BIQA methods: HyperIQA
[59], DBCNN [60] and MEON [61]. HyperIQA adopts hyper
network to estimate the image quality in a self-adaptive man-
ner. DBCNN adopts bilinear pooling to fuse features extracted
from networks trained on image classification task and distor-
tion type classification task, which works for both synthetically
and authentically distorted images. MEON consists of two sub-
networks, i.e., a distortion identification network and a quality
prediction network, sharing the early layers. In contrast, LIQA
simply adopts the pre-trained ResNet-18. For each task, we
mix the images from previously learned tasks and the current
task for training and report the average correlation index as
well as the average forgetting index across all tasks. The results
under inner-dataset distortion shift and cross-dataset distortion
shift are shown in Table IX. From the results, we can find that
LIQA outperforms MEON and HyperIQA under inner-dataset
distortion shift and achieves the best performance under cross-
dataset distortion shift when utilizing images from all seen
tasks. It is because that the pseudo replay strategy serves as
a strong data augmentation strategy while training, increasing
the diversity of training samples. Specially, there exist severe
data unbalance problem under the cross-dataset distortion shift.
For example, the total number of images from KonIQ-10K is
more than 10,000 while that from BID is less than 600. LIQA
mitigates the data unbalance problem by generating pseudo
features.
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TABLE IX: Average correlation index and average forgetting
index of different BIQA algorithms.

C̄/F̄
Methods

MEON [61] DBCNN [60] HyperIQA [59] LIQA

inner-dataset 0.731/0.071 0.774/0.046 0.653/0.082 0.765/0.058
cross-dataset 0.868/-0.003 0.833/0.029 0.825/0.016 0.872/-0.001

TABLE X: Mean and std values of average correlation index
and average forgetting index across five runs.

FT EWC Online
EWC SI LWF GFR JT LIQA

C̄
mean↑ 0.489 0.541 0.538 0.486 0.512 0.539 0.673 0.695
std↓ 0.012 0.022 0.013 0.020 0.008 0.022 0.011 0.009

F̄
mean↓ 0.302 0.232 0.253 0.304 0.271 0.235 0.084 0.087
std↓ 0.009 0.018 0.017 0.009 0.005 0.019 0.008 0.009

5) Statistical analysis: We compute the mean and std
values of average correlation index C̄ as well as average for-
getting index F̄ of each method (under inner-dataset distortion
shift with incremental step set to 1) across five runs. The
results are shown in in Table X. For C̄, the higher mean value
represents better performance of the continual learner while
lower std value represents more stable performance. For F̄ , the
lower mean value means less forgetting of previous knowledge
during the incremental learning process while lower std value
means more stable performance. By comparing the mean
values, we can see that LIQA can achieve the best performance
among all the compared methods and can effectively mitigate
the forgetting of previously learned knowledge. By comparing
the std values, we can see that the performance of LIQA is
stable.

We further use a hypothesis testing approach based on t-
statistics [62] to demonstrate the superiority of LIQA. In our
experiment, the two-sample t-test between the pair of C̄ values
at the 5% significance level is conducted. Fig. 8 shows the
results of t-test, where the value 1/0/-1 indicates that row
methods perform statistically better/comparably/worse than the
column methods. From the results, we can see that LIQA
outperforms FT as well as other lifelong learning methods,
and performs comparably compared with JT without access
to previous training data.
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Fig. 8: Significance t-test results under inner-dataset distortion
shift with incremental step set to 1.

VI. CONCLUSION

We propose a new LIQA framework to achieve the lifelong
learning of BIQA. The proposed LIQA employs a generator
conditioned on the distortion type and the quality score to
generate pseudo features, which serves as a memory replayer
when learning new tasks. In order to resist the negative effect
of certain task during the whole incremental learning process,
we employ an auxiliary multi-head regression network to
generate predicted quality score of each seen distortion type. It
avoids the conflicts between different distortion types and thus
improve the robustness to task permutations. Extensive exper-
iments verify that LIQA can effectively mitigate the catas-
trophic forgetting when facing with inner-dataset distortion
shift and cross-dataset distortion shift during the sequential
learning process.

In this paper, LIQA focuses on the close-set experimental
setting where we can specify the novel distortions during
sequential learning process. Also, LIQA can be extended to
open-set experimental setting which we will explore in the
future. Specifically, for the real-world collected images, we
can first automatically discover the out-of-distribution images
that the current model cannot handle. Then we cluster the
images into several distortion types. Next we incrementally
learn the found novel distortions.
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