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Abstract—360-degree/omnidirectional images (OIs) have re-
ceived remarkable attention due to the increasing applications
of virtual reality (VR). Compared to conventional 2D images,
OIs can provide more immersive experiences to consumers,
benefiting from the higher resolution and plentiful field of views
(FoVs). Moreover, observing OIs is usually in a head-mounted
display (HMD) without references. Therefore, an efficient blind
quality assessment method, which is specifically designed for 360-
degree images, is urgently desired. In this paper, motivated by
the characteristics of the human visual system (HVS) and the
viewing process of VR visual content, we propose a novel and
effective no-reference omnidirectional image quality assessment
(NR OIQA) algorithm by MultiFrequency Information and
Local-Global Naturalness (MFILGN). Specifically, inspired by
the frequency-dependent property of the visual cortex, we first
decompose the projected equirectangular projection (ERP) maps
into wavelet subbands by using discrete Haar wavelet trans-
form (DHWT). Then, the entropy intensities of low-frequency
and high-frequency subbands are exploited to measure the
multifrequency information of OIs. In addition to considering
the global naturalness of ERP maps, owing to the browsed
FoVs, we extract the natural scene statistics (NSS) features
from each viewport image as the measure of local naturalness.
With the proposed multifrequency information measurement and
local-global naturalness measurement, we utilize support vector
regression (SVR) as the final image quality regressor to train
the quality evaluation model from visual quality-related features
to human ratings. To our knowledge, the proposed model is
the first no-reference quality assessment method for 360-degree
images that combines multifrequency information and image
naturalness. Experimental results on two publicly available OIQA
databases demonstrate that our proposed MFILGN outperforms
state-of-the-art full-reference (FR) and NR approaches.

Index Terms—Omnidirectional images, no-reference image
quality assessment, multifrequency information, local-global nat-
uralness, human visual system.

I. INTRODUCTION

IMMERSIVE multimedia technologies, especially virtual
reality (VR), can provide viewers with more realistic and

interactive user experiences [1]. As the most common form
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of VR content, 360-degree/omnidirectional images and videos
record visual information that covers the entire 180 × 360

◦

viewing sphere, thus attracting considerable attention from
both academia and industry in recent years [2]. With a com-
mercial head-mounted display (HMD), users can freely view
any direction with the specific content by head movement,
which is different from conventional 2D images and videos.
Moreover, due to the omnidirectional viewing range, the reso-
lution of 360-degree images/videos is usually ultrahigh, e.g., 4
K, 8 K, or even higher. This creates considerable difficulties in
the 360-degree image/video processing chain, such as acqui-
sition, compression, transmission, reconstruction and display
[3]. Additionally, the perceptual quality of omnidirectional
images can degrade in 360-degree image/video processing
systems. Therefore, the study of 360-degree/omnidirectional
image quality assessment (OIQA) is more challenging and
significant for guiding the development of VR applications.

Recently, there has been ever-increasing interest in the
research field of image quality assessment (IQA). Two types
of IQA methods are involved: subjective IQA [4]–[8] and
objective IQA [9]–[13]. In subjective IQA tests, subjects are
asked to give the human ratings for each viewed image. After
data processing and outlier elimination, the mean opinion score
(MOS) can be obtained by computing the average quality
scores of all subjects for each image, which can be regarded
as the quantitative ground truth of the perceptual quality [14].
Since humans are the ultimate viewers, subjective IQA is
the most reliable quality assessment approach. By conducting
such subjective experiments, several subjective OIQA databas-
es have been established. For example, a testbed for the
subjective measurement of 360-degree/omnidirectional content
was proposed [15], where 6 reference and 54 distorted om-
nidirectional images (OIs) were included. JPEG compression
with various quality parameters and two projection models
were considered in this database. Moreover, in [16], 4 high-
fidelity uncompressed OIs were used to generate 100 impaired
images with different geometric projections and three codecs,
i.e., JPEG, JPEG2000, and HEVC intra. Four target bitrates
were selected to compress the original OIs. The compressed
VR image quality database (CVIQD) was built in [17], which
includes 5 reference and 165 compressed OIs by JPEG, AVC,
and HEVC codecs. Furthermore, this database was expanded
to CVIQD2018 [18] with more visual content, leading to
16 pristine and 528 compressed images. In [19], different
resolutions and JPEG compression were considered, where the
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(a) (b)

Fig. 1: Illustration of the projected ERP map and various
viewports of a 360-degree image.

database had 12 original and 144 distorted OIs. In addition,
an omnidirectional image quality assessment (OIQA) database
[20] was developed, consisting of 16 reference and 320 distort-
ed images. In addition to JPEG and JPEG2000 compression
artifacts, different levels of white Gaussian noise and Gaussian
blur were considered in this database. Since observers usually
exploit the HMD to view OIs, absolute category rating with
hidden reference (ACR-HR) methods, which are also referred
to as single-stimulus (SS) methods, were adopted to build all
these subjective quality assessment databases for OIs.

However, subjective tests are generally time consuming and
labor intensive. Thus, objective visual quality assessment al-
gorithms used to automatically measure the perceptual quality
of OIs are required. As shown in Fig. 1, (a) represents the pro-
jected equirectangular projection (ERP) map of a viewed VR
scene. The projected ERP map usually has a higher resolution,
such as 4 K or 8 K. Hence, it is suitable for multiresolution
decomposition, which is also an image decomposition in the
frequency channels of constant bandwidth on a logarithmic
scale. Moreover, the concept of multiresolution can interpret
multifrequency channel decomposition [21]. In this figure,
except for the projected ERP map, (b) shows 6 viewports
from a variety of viewing directions, each of which is a
part of the 360-degree image falling into the field of view
(FoV) in the HMD. The naturalness characteristics reflected by
statistical regularizations from the global ERP map and local
viewports are different. In addition, a no-reference quality
assessment model for 3D/stereoscopic omnidirectional images
was proposed in [22]. The monocular multiscale features
were extracted from left and right views separately, while
the binocular perception features were exploited from ten-
sor decomposition and the absolute difference map as well
as product images of left and right views. The naturalness
features involved in the product image were also validated.
Nevertheless, it is different than the 2D omnidirectional images
considered in this paper, where we only have one single-view
image with multiple viewports.

Based on these observations, in this paper, we propose a
novel no-reference (NR) OIQA method by MultiFrequency
Information and Local-Global Naturalness (MFILGN). First,
according to a series of neuroscience studies on the human
visual system (HVS), neuronal responses in the visual cortex
are frequency-dependent [23]. In other words, each neuron
corresponds to specific spatial and temporal frequency signals.
Therefore, the input visual signal can be decomposed into
multiple frequency domains, which is more in line with human

visual perception. Among various multifrequency channel de-
composition methods, wavelet decomposition shows superiori-
ty in processing visual signals [24]. Wavelet decomposition has
also been demonstrated to have good performance in IQA [25],
[26]. Motivated by this mechanism, we decompose the pro-
jected ERP maps into wavelet subbands through discrete Haar
wavelet transform (DHWT). The decomposed low-frequency
and high-frequency subbands represent luminance information
and textural details, respectively. We then compute the entropy
intensities of low-frequency and high-frequency subbands,
which are used to measure the multifrequency information
of OIs. Second, due to different viewports during browsing,
we propose the local-global naturalness measurement, where
the natural scene statistics (NSS) features are extracted from
both locally viewed FoVs and global ERP maps. To the
best of our knowledge, naturalness has been proven in many
IQA studies [27], [28], but it has not been used in OIQA.
Finally, the quality predictions of OIs are obtained by the well-
known support vector regression (SVR). As demonstrated by
extensive experiments, our proposed MFILGN performs better
than state-of-the-art FR and NR algorithms on two publicly
available OIQA databases.

The main contributions of this work are summarized as
follows:

• We propose the first blind OIQA algorithm based on
multifrequency information and local-global naturalness
measurements.

• According to the frequency-dependent characteristic of
the human visual cortex, we derive the decomposed
low- and high-frequency subbands and utilize the entropy
intensities of these subband images to reflect the multi-
frequency information in omnidirectional images.

• Considering the viewing process of omnidirectional im-
ages, in addition to the global naturalness from the
projected ERP maps, we extract the local naturalness
features from various viewports together with global NSS
to composite the local-global naturalness measurement.

The remaining sections of this paper are organized as
follows. In Section II, we present the related works of objective
quality assessment for both traditional 2D images and OIs.
Section III introduces the proposed MFILGN model for NR
OIQA in detail. In Section IV, the experimental results and
analysis are presented. Section V concludes the paper with
possible future research directions.

II. RELATED WORKS

Whether for traditional objective IQA or objective OIQA,
when the originally pristine/reference image is available, full-
reference (FR) objective visual quality assessment models are
developed. For conventional FR IQA, signal fidelity metrics
such as the mean square error (MSE) and peak signal-to-noise
ratio (PSNR) measure the visual quality by computing the
pixel differences between original and distorted images. Due
to the simple calculation and optimization processes, they are
widely used in image processing. Nevertheless, their perfor-
mance is relatively unsatisfactory and cannot precisely predict
the human perceived visual quality. Therefore, the character-
istics of the HVS are employed to construct perception-based
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Fig. 2: The overall framework of our proposed MFILGN. It consists of multifrequency information measurement and local-
global naturalness measurement.

IQA models, for instance, the structural similarity (SSIM)
index [29] and its different variants, including the multiscale
SSIM (MS-SSIM) index [30] and the feature similarity (FSIM)
index [31].

In practical scenarios, perfect-quality original images are
usually difficult to obtain, and thus, no-reference objective
visual quality assessment approaches are urgently needed.
For traditional NR IQA, many methods extract handcrafted
distortion-discriminative features for predicting the perceptual
image quality, such as the blind/referenceless image spatial
quality evaluator (BRISQUE) [32] and the blind multiple pseu-
doreference images-based (BMPRI) measure [33]. In recent
decades, due to the powerful feature representation learning
capacity, deep learning has shown unprecedented success in
many image processing and computer vision tasks [34], [35].
This also presents an opportunity for evaluating the image
visual quality. Typical methods include deep image quality
assessment (DeepQA) [36] and the deep bilinear convolutional
neural network (DB-CNN) [37] for FR and NR IQA, respec-
tively. Furthermore, several perception-based preprocessing
strategies have been presented in existing works. For example,
before training CNN models, saliency maps can be used
to assign importance to distorted image patches [38]. The
distorted image stream and gradient image stream are both
considered in CNNs to predict perceptual image quality scores
[39].

Although there exist many classical objective quality assess-
ment algorithms for FR and NR IQA, they are designed for
regular flat 2D images and are unsuitable for assessing the
perceptual quality of OIs. However, limited research works
related to objective OIQA methods have been proposed in

the literature. In general, existing objective OIQA models
can be classified into two categories. The first is to extend
conventional FR IQA approaches to FR OIQA [40]–[45]. For
example, several PSNR-based FR OIQA models have been
presented. Yu et al. [40] proposed the spherical PSNR (S-
PSNR), which chose specific points on the spherical surface
rather than the projected panoramic image. Sun et al. [41]
developed the weighted-to-spherically uniform PSNR (WS-
PSNR) by combining the error map with the weighted map,
which was determined by stretched regions. Zakharchenko et
al. [42] presented the Craster parabolic projection PSNR (CPP-
PSNR), which computed the PSNR on the Craster parabolic
projection domain. Xu et al. [43] proposed the noncontent-
based PSNR (NCP-PSNR) and content-based PSNR (CP-
PSNR) by weighting pixels with position information and
predicting viewing direction, respectively. Likewise, the per-
formance of PSNR-based FR OIQA methods is insufficient be-
cause they do not consider the HVS characteristics. Afterward,
objective FR OIQA methods based on SSIM were proposed
in succession. Similar to WS-PSNR, Zhou et al. [44] designed
the weighted-to-spherically uniform SSIM (WS-SSIM), where
the position weighted map was used to multiply the SSIM. To
reduce the influence of geometric distortions on the projection,
Chen et al. [45] proposed the spherical SSIM (S-SSIM), which
calculated the similarity of each image pixel on the sphere. The
second category is the deep learning-based NR IQA methods
[46]–[50]. Considering the spherical representation of 360-
degree content, Kim et al. [46] proposed a deep learning
framework for VR image quality assessment (DeepVR-IQA)
based on adversarial learning, in which the quality scores of
sampled patches were predicted and then weighted according
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to the patch positions on the sphere. Moreover, in [47], head
movement (HM) and eye movement (EM) were exploited to
weight the quality scores in deep learning models. However,
the image patches sampled from the projected plane reveal
nonnegligible geometric deformation, which could not reflect
the actual viewing contents. Thus, viewports were utilized
to predict the perceptual quality of OIs. Specifically, Li et
al. [48] proposed a viewport-based CNN (V-CNN), which
predicted the quality scores of viewports instead of image
patches sampled from projected planes. Sun et al. [49] de-
signed a multichannel CNN for blind 360-degree image quality
assessment (MC360IQA), including 6 parallel hyper-ResNet34
networks to process viewport images and an image quality
regression module to aggregate learned features for obtaining
the final image quality. Xu et al. [50] proposed the viewport
oriented graph convolution network (VGCN) to address the
perceptual quality assessment for OIs, which was guided by
different viewports.

From the above reviewed objective quality assessment mod-
els for OIs, it can be concluded that existing objective OIQA
methods have achieved success to a certain extent. However,
we also notice that they all ignore the important multifrequen-
cy information as well as the statistical regularizations of OIs
from both global projection maps and local viewports. To fill
this gap, in this work, we present a no-reference OIQA method
by considering multifrequency information and local-global
naturalness simultaneously.

III. THE PROPOSED QUALITY ASSESSMENT METHOD

In this section, we introduce the proposed NR OIQA method
that can blindly predict the perceptual quality of OIs in techni-
cal details. The overall framework of our proposed MFILGN is
shown in Fig. 2, which consists of two separate measurements:
the multifrequency information measurement and local-global
naturalness measurement. For the multifrequency information
measurement, inspired by the HVS characteristics, the Haar
wavelet transform is first applied to decompose the projected
ERP maps into multiple subbands. Then, the entropy intensi-
ties are calculated to measure the multifrequency information.
For the local-global naturalness measurement, considering
the changeable FoVs during the viewing process, both local
naturalness from different viewports and global naturalness
from ERP maps are extracted. The final quality index is
obtained by the regression of these distortion-related features.

A. Image Decomposition

According to HVS studies, different neurons respond to
different visual signal frequencies [23]. The input visual
stimulus should be decomposed into various subband images
for subsequent processing. Moreover, wavelet transform is one
of the multifrequency channel decomposition methods. Here,
we choose the wavelet transform to conduct the distorted
image decomposition. Generally, there exist many wavelets,
including the Haar wavelet, Morse wavelet, Gabor wavelet,
and Bump wavelet. In all of these wavelets, the Haar wavelet
is symmetrical and a special case of the Daubechies wavelet,
which shows great success in perceptual quality assessment

(a)

(b)

Fig. 3: Multifrequency channel decomposition by DHWT.
(a) An example of a distorted 360-degree image; (b) the
decomposed four subband images of (a).

[51]–[53]. Therefore, we adopt DHWT to decompose the
distorted OIs into multifrequency subbands. Specifically, the
Haar wavelet can be formulated as:

1√
2
ψ(t) =

1√
2
(ϕ(t− 1)− ϕ(t))

=
+∞∑

u=−∞
(−1)

1−u
h[1− u]ϕ(t− u),

(1)

where the mother wavelet ψ is defined by:

ψ(t) =


1, for t ∈ [0,

1

2
),

−1, for t ∈ [
1

2
, 1),

0, otherwise.

(2)

Moreover, the father wavelet or scaling function ϕ and its
corresponding filter h are computed as:

ϕ(t) =

{
1, for t ∈ [0, 1),

0, otherwise.
(3)
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(a) (b)

(c) (d)

Fig. 4: Entropy intensity changes for different distorted 360 images. (a) Low JPEG distortion denoted by JPEG-Level1; (b)
middle JPEG distortion denoted by JPEG-Level2; (c) high JPEG distortion denoted by JPEG-Level3; (d) the corresponding
entropy intensity changes of low- and high-frequency subbands for (a), (b) and (c).

h[u] =


1√
2
, for u = 0, 1,

0, otherwise.

(4)

With the Haar wavelet, we can obtain the Haar wavelet
transform by cross multiplying different shifts and stretches.
Here, let H denote the DHWT matrix. Assume a distorted
360-degree image D with resolution I × J . Then, the input
360-degree image can be decomposed into four I

2×
J
2 subband

images by DHWT as follows:

HDHT =

[
DLL DHL

DLH DHH

]
, (5)

where DLL, DHL, DLH , and DHH represent the four decom-
posed subbands with low or high frequency in the horizontal
or vertical direction. HT is the transpose matrix of H .

B. Multifrequency Information

Fig. 3 illustrates the multifrequency channel decomposition
by DHWT. We show a distorted 360-degree image in (a), and
the four images in (b) are the decomposed results of (a). In this
figure, we can see that the decomposed subband images are
different from each other, which can reflect various frequency
characteristics of the distorted 360-degree image. Since the
entropy intensities can reflect the average amount of image
information, images with different distortions create various
entropy intensities. In particular, after the multifrequency
channel decompositions of distorted 360-degree images, the
entropy intensities of decomposed low-frequency and high-
frequency subbands differ from each other. We then compute

the entropy intensities of the four decomposed subband images
as:

Es = −
K∑

k=0

psklog2p
s
k, (6)

where s ∈ {LL, HL, LH, HH} denotes the collection of
frequency decomposition components. psk and K indicate the
probability of the pixel equaling k and the maximum pixel
value in the corresponding decomposed subband image. The
probability can be calculated by:

psk =
Ns

k

N
, (7)

where Ns
k is the number of pixel values equal to k in the

corresponding decomposed subband image. N represents the
total number of pixels.

After computing the entropy intensities of the four decom-
posed subband images, we use their joint component features
to measure multifrequency information as:

FMFI = [ELL, EHL, ELH , EHH ], (8)

where FMFI denotes the multifrequency information measure-
ment, which reflects the discriminative entropy information
from both low- and high-frequency subbands.

In Fig. 4, we show three 360-degree images with differ-
ent JPEG distortion levels and their corresponding entropy
intensities of low-frequency and high-frequency subbands. The
image samples are from OIQA database [20]. We find that
the entropy intensities for the four frequency subbands change
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Fig. 5: Effects of the ZCA whitening filter and MSCN operation on the statistical distribution of the distorted ERP map.

significantly with regard to various distortions. That is, more
JPEG distortions lead to a decrease in the entropy intensities
of low- and high-frequency subbands, which demonstrates
the effectiveness of the proposed multifrequency information
measurement.

C. Global Naturalness

In addition to the multifrequency information in the pro-
jected ERP maps, the image naturalness, which is reflected by
statistical regularizations, is crucial to the perceptual quality of
OIs. Although NSS features have been applied to traditional
multimedia formats, such as 2D [32] and 3D [9], to the best
of our knowledge, they have not yet been used to evaluate the
perceptual quality of VR images. Therefore, here we explore
the naturalness in OIQA. Intuitively, we can extract the NSS
features from global ERP maps. Given the distorted 360-
degree image D with resolution I × J , to reduce the spatial
redundancy of adjacent image pixels, we first adopt the zero-
phase component analysis (ZCA) whitening filter as follows:

Dz = Z(D), (9)

where Z indicates the ZCA whitening filter. Dz is the distorted
ERP map after ZCA filtering.

Afterward, the local mean subtracted and contrast normal-
ized (MSCN) coefficients are computed to measure the image
naturalness, which can model contrast gain masking in the
early human visual cortex [54]. For each distorted ERP map
after ZCA filtering, the MSCN coefficients are calculated by:

D̂z(i, j) =
Dz(i, j)− µ(i, j)

σ(i, j) + C
, (10)

where D̂z(i, j) and Dz(i, j) are the distorted ERP maps after
local normalization (i.e., the MSCN coefficients) and after
ZCA filtering at spatial position (i, j), respectively. µ(i, j) and
σ(i, j) represent the local mean and standard deviation of the
distorted ERP map, which are computed as:

µ(i, j) =
S∑

s=−S

T∑
t=−T

ws,tD
z(i, j), (11)

σ(i, j) =

√√√√ S∑
s=−S

T∑
t=−T

ws,t(Dz(i, j)− µ(i, j))
2
, (12)

where w = {ws,t|s = −S..., S, t = −T...T} denotes the 2D
circularly symmetric Gaussian weighted function.

In Fig. 5, we show the statistical distributions of the input
distorted ERP map and the distorted ERP map after ZCA
filtering as well as the local normalization process. In figures
(a-c), we can observe that the ZCA filtering and the MSCN
operation both make the probability distribution of the dis-
torted ERP map more Gaussian-like. Moreover, the statistical
distribution after local normalization is the closest to the
Gaussian distribution. Thus, we exploit the MSCN coefficients
for the subsequent feature processing. Additionally, Fig. 6
presents the statistical distributions of MSCN coefficients for
different distortion types and levels. As seen in this figure, the
probability distributions of the distorted ERP map after local
normalization are influenced by different distortion types as
well as the distortion levels, which demonstrates that the sta-
tistical distributions of MSCN coefficients are discriminative
for the perceptual quality assessment of 360-degree images.

With the probability distributions of the distorted ERP map
after local normalization, we utilize the zero-mean general-
ized Gaussian distribution (GGD) and asymmetric generalized
Gaussian distribution (AGGD) models to quantify the MSCN
coefficient distribution. The zero-mean AGGD used to fit the
distribution is:

f(x; τ, σ2
l , σ

2
r) =


τ

(υl + υr)Γ(
1
τ )
e
−(−x

υl
)
τ

, x < 0,

τ

(υl + υr)Γ(
1
τ )
e−(−x

υr
)
τ

, x ≥ 0,
(13)

where

υl = σl

√
Γ( 1τ )

Γ( 3τ )
, (14)

υr = σr

√
Γ( 1τ )

Γ( 3τ )
, (15)
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(a) (b)

Fig. 6: Statistical distributions of MSCN coefficients for different distortion types and levels from the OIQA database [20]. (a)
MSCN coefficients vary with various distortion types; (b) MSCN coefficients under four JPEG2000 compression levels.

and τ denotes the shape parameter, which can control the
shape of the statistical distribution. σl and σr are the scales
of the left and right sides for the statistical distribution,
respectively. Γ(·) is the gamma function that is defined as:

Γ(a) =

+∞∫
0

xa−1e−xdx, a > 0. (16)

The best AGGD fitting with parameters (η, τ, σ2
l , σ

2
r) is then

calculated, and η is given by:

η = (υl − υr)
Γ( 2τ )

Γ( 1τ )
. (17)

Furthermore, if σl = σr, the AGGD becomes the GGD model
as follows:

f(x; τ, σ2) =
τ

2υΓ( 1τ )
e−(

|x|
υ )

τ

, (18)

where

υ = σ

√
Γ( 1τ )

Γ( 3τ )
. (19)

In addition, the distorted 360-degree images are down-
sampled by a factor of 2. Finally, the two scales, including
the original image scale and a reduced resolution scale, are
exploited to extract the global NSS features FGNSS from the
projected ERP maps.

D. Local Naturalness

When observers browse VR images in the HMD, they
can freely change the viewports. Moreover, different FoVs
have various contents, and global 360-degree scenery can
be reconstructed based on what humans see from multiple
viewports. Therefore, apart from the global naturalness from
the projected ERP maps, it is also important to explore the

local naturalness according to a variety of FoVs. As illustrated
in Fig. 7 (a), we show an example of a global ERP map
and local images from different spatial positions (i.e., the four
FoVs). (b) shows the corresponding statistical distributions of
the MSCN coefficients. The probability distributions of the
global ERP map and four FoVs are different from each other.
In addition, the distributions of FoV-2 and FoV-3 near the
equator are close. Thus, we adopt the local NSS from these
FoVs located at various spatial positions as the complementary
features to global NSS from the projected ERP maps.

Specifically, assume that there exist M FoV images, and we
extract the NSS features from them by the same steps as global
naturalness. We then can obtain (F 1

LNSS , F
2
LNSS ..., F

M
LNSS)

representing all these viewports. Finally, the average of the
NSS features is computed by:

FLNSS =
1

M

M∑
m=1

Fm
LNSS , (20)

where FLNSS indicates the local NSS features from viewed
FoVs. We combine the local and global NSS features to
constitute the local-global naturalness measurement as follows:

FLGN = [FLNSS , FGNSS ]. (21)

To achieve the local-global naturalness measurement, we
need to sample M viewports from each distorted 360-degree
image. Motivated by the fact that VR images are viewed
on a sphere and polar regions usually stretch, resulting in
geometric deformation for projected ERP maps, we employ
the nonuniform sampling strategy [55], [56]. As shown in Fig.
8, for the equator, we first sample M0 viewports equidistantly.
Then, the remaining viewpoints are selected by:

θ =
360◦

M0
, (22)

M1 = ⌊M0 cos θ⌋ , (23)
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FoV-1 FoV-2

FoV-3 FoV-4ERP Map

Global and Local Images

Fig. 7: An example of global and local images from different spatial positions with their corresponding statistical distributions
of MSCN coefficients.

M2 = ⌊M0 cos 2θ⌋ , (24)

Mend =

⌊
M0 cos

90◦

θ

⌋
, (25)

where M1 and M2 are the numbers of viewports sampled on
θ and 2θ degrees north or south latitude, respectively. The
sampling process ends when the maximum latitude reaches
90◦ with Mend sampled viewports. After the computation of
viewport sampling, we can obtain a total of M viewports for
each distorted OI as:

M =M0 +
end∑
m=1

2 ∗Mm. (26)

E. Quality Regression

With the multifrequency information measurement and
local-global naturalness measurement, the ultimate quality s-
core of 360-degree images is obtained by the well-known SVR
[57]. Specifically, we randomly divide all distorted OIs into a
training set and a testing set, which are denoted by χtrain and
χtest, respectively. By adopting SVR, our proposed MFILGN
model is achieved by training the distortion-related features of
OIs in the training set χtrain and their corresponding MOS
values. Given a distorted 360-degree image Dtrain ∈ χtrain

and its extracted features [FMFI , FLGN ] from the multifre-
quency information measurement and local-global naturalness
measurement, the MFILGN model is defined by:

MFILGN = SV R TRAIN([FMFI , FLGN ], [Q]), (27)

where Q is the subjective quality rating (i.e., MOS) of the
input 360-degree image.

After training the proposed MFILGN model, we verify the
model performance on the testing set χtest. For example, the
predicted quality score of a tested 360-degree image Dtest ∈
χtest that does not appear in the training set is computed as
follows:

q = SV R PREDICT ([F̂MFI , F̂LGN ],MFILGN), (28)

where [F̂MFI , F̂LGN ] represent the extracted features from
the multifrequency information measurement and local-global
naturalness measurement for the tested 360-degree image.
Finally, the correlation or error between the predicted scores
and the corresponding ground truth MOS values for the testing
set is measured as the performance of MFILGN.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first introduce the experimental protocol,
including the OIQA databases and measurement criteria used
in our experiments. Then, we evaluate the proposed MFIL-
GN for overall performance and performance for individual
distortion types on the OIQA [20] and CVIQD [17], [18]
databases. After that, various weighting methods of viewports,
as well as different parameters containing the adopted viewport
numbers and training percentages, are analyzed. Finally, an
ablation study is conducted to prove the effectiveness of each
component in our MFILGN model.

A. Experimental Protocol

1) Databases: Two benchmark OIQA databases are utilized
in the experiments, which consist of the OIQA [20] and
CVIQD [17], [18] databases.

• OIQA comprises 16 pristine images and 320 distorted
OIs degraded by 4 distortion types and 5 distortion levels.
Among the distortion types, two kinds of compression
artifacts are involved, namely, JPEG and JPEG2000 com-
pression. The remaining distortion types are Gaussian
blur and Gaussian noise. The subjective quality ratings
in the form of MOS are provided in the range [1, 10]. A
higher MOS indicates better perceptual image quality.

• CVIQD contains 528 compressed images derived
from 16 original images. It adopts three popular im-
age/video coding technologies, i.e., JPEG, H.264/AVC,
and H.265/HEVC. Moreover, the MOS values in this
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Fig. 8: Demonstration of sampling viewports when M0 = 8 and θ = 45◦ for the sphere and plane, respectively.

TABLE I: OVERALL PERFORMANCE COMPARISONS ON THE OIQA AND CVIQD DATABASES. THE BEST RESULTS ARE
DENOTED IN BOLD.

Database OIQA CVIQD

Type Methods SROCC PLCC RMSE SROCC PLCC RMSE

FR

PSNR 0.5226 0.5812 1.7005 0.6239 0.7008 9.9599
S-PSNR [40] 0.5399 0.5997 1.6721 0.6449 0.7083 9.8564

WS-PSNR [41] 0.5263 0.5819 1.6994 0.6107 0.6729 10.3283
CPP-PSNR [42] 0.5149 0.5683 1.7193 0.6265 0.6871 10.1448

SSIM [29] 0.8588 0.8718 1.0238 0.8842 0.9002 6.0793
MS-SSIM [30] 0.7379 0.7710 1.3308 0.8222 0.8521 7.3072

FSIM [31] 0.8938 0.9014 0.9047 0.9152 0.9340 4.9864
DeepQA [36] 0.8973 0.9044 0.8914 0.9292 0.9375 4.8574

NR

BRISQUE [32] 0.8331 0.8424 1.1261 0.8180 0.8376 7.6271
BMPRI [33] 0.6238 0.6503 1.5874 0.7470 0.7919 8.5258

DB-CNN [37] 0.8653 0.8852 0.9717 0.9308 0.9356 4.9311
MC360IQA [49] 0.9139 0.9267 0.7854 0.9428 0.9429 4.6506

VGCN [50] 0.9515 0.9584 0.5967 0.9639 0.9651 3.6573
Proposed MFILGN 0.9614 0.9695 0.5146 0.9670 0.9751 3.1036

database are normalized and rescaled to the range [0,
100].

2) Measure Criteria: To validate the effectiveness of our
proposed MFILGN and compare with other state-of-the-art
methods, three commonly used measurement criteria [58] are
employed, as described below.

• Spearman rank-order correlation coefficient (SROC-
C) is computed by:

SROCC = 1−
6

N∑
i=1

di
2

N(N2 − 1)
, (29)

where N is the number of image samples. di indicates
the rank difference between the subjective and objective
evaluations for the i− th image.

• Pearson linear correlation coefficient (PLCC) is cal-
culated as:

PLCC =

N∑
i=1

(si − µsi)(oi − µoi)√
N∑
i=1

(si − µsi) ∗
N∑
i=1

(oi − µoi)

, (30)

where si and oi denote the i− th subjective and mapped
objective quality values. µsi and µoi represent the corre-
sponding mean values of si and oi, respectively.

• Root mean squared error (RMSE) is defined by:
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TABLE II: PERFORMANCE COMPARISONS FOR INDIVIDUAL DISTORTION TYPE ON THE CVIQD DATABASE. THE BEST
RESULTS ARE DENOTED IN BOLD.

Database JPEG AVC HEVC

Type Methods SROCC PLCC RMSE SROCC PLCC RMSE SROCC PLCC RMSE

FR

PSNR 0.6982 0.8682 8.0429 0.5802 0.6141 10.552 0.5762 0.5982 9.4697
S-PSNR [40] 0.7172 0.8661 8.1008 0.6039 0.6307 10.3760 0.6150 0.6514 8.9585

WS-PSNR [41] 0.6848 0.8572 8.3465 0.5521 0.5702 10.9841 0.5642 0.5884 9.5473
CPP-PSNR [42] 0.7059 0.8585 8.3109 0.5872 0.6137 10.5615 0.5689 0.6160 9.3009

SSIM [29] 0.9582 0.9822 3.0468 0.9174 0.9303 4.9029 0.9452 0.9436 3.9097
MS-SSIM [30] 0.9047 0.9636 4.3355 0.7650 0.7960 8.0924 0.8011 0.8072 6.9693

FSIM [31] 0.9639 0.9839 2.8928 0.9439 0.9534 4.0327 0.9532 0.9617 3.2385
DeepQA [36] 0.9001 0.9526 4.9290 0.9375 0.9477 4.2683 0.9288 0.9221 4.5694

NR

BRISQUE [32] 0.9031 0.9464 5.2442 0.7714 0.7745 8.4573 0.7644 0.7548 7.7455
BMPRI [33] 0.9562 0.9874 2.5597 0.6731 0.7161 9.3318 0.6715 0.6154 9.3071

DB-CNN [37] 0.9576 0.9779 3.3862 0.9545 0.9564 3.9063 0.8693 0.8646 5.9335
MC360IQA [49] 0.9693 0.9698 3.9517 0.9569 0.9487 4.2281 0.9104 0.8976 5.2557

VGCN [50] 0.9759 0.9894 2.3590 0.9659 0.9719 3.1490 0.9432 0.9401 4.0257
Proposed MFILGN 0.9591 0.9862 2.7904 0.9683 0.9785 2.4998 0.9485 0.9581 3.3950

TABLE III: PERFORMANCE RESULTS FOR VARIOUS WEIGHTING STRATEGIES ON THE OIQA AND CVIQD DATABASES.

Database OIQA CVIQD

Methods SROCC PLCC RMSE SROCC PLCC RMSE

Average Weighting 0.9614 0.9695 0.5146 0.9670 0.9751 3.1036
Location Weighting 0.9607 0.9688 0.5213 0.9665 0.9748 3.1212
Content Weighting 0.9598 0.9681 0.5252 0.9667 0.9749 3.1073

TABLE IV: PERFORMANCE RESULTS FOR DIFFERENT
VIEWPORT NUMBERS ON THE OIQA AND CVIQD

DATABASES.

Database OIQA CVIQD

Number SROCC PLCC RMSE SROCC PLCC RMSE

6 0.9608 0.9691 0.5155 0.9665 0.9746 3.1160
20 0.9614 0.9695 0.5146 0.9670 0.9751 3.1036
80 0.9616 0.9696 0.5134 0.9678 0.9758 3.0530

RMSE =

√√√√√ N∑
i=1

(si − oi)
2

N
. (31)

In addition, each OIQA database is randomly divided into
80% for training and the remaining 20% for testing. We
perform 1,000 cross-validation iterations on each database.
The median SROCC, PLCC and RMSE performance values
are then taken as the final measurement. Before calculating the
PLCC and RMSE for different objective quality assessment
approaches, a five-parameter logistic nonlinear fitting function
is used to map the predicted quality scores to a common scale
as follows:

g(x) = β1(
1

2
− 1

1 + eβ2(x−β3)
) + β4x+ β5, (32)

where {βi|i = 1, 2, ..., 5} are five parameters to be fitted. x and
g(x) denote the raw objective quality score and the regressed
quality score after the nonlinear mapping process.

In addition, the abovementioned three measurement criteria
can reflect different aspects of the performance for various
IQA algorithms. Specifically, SROCC is generally used to
measure prediction monotonicity, while PLCC and RMSE
indicate prediction accuracy. Note that higher correlation co-
efficients and lower error mean better performance.

B. Performance Comparison with Existing Objective Models

To demonstrate the effectiveness of our proposed MFILGN
model, we conduct extensive experiments to compare with
existing FR and NR objective image quality assessment al-
gorithms. The FR models include conventional FR IQA and
OIQA approaches (i.e., PSNR, SSIM [29], MS-SSIM [30],
FSIM [31], S-PSNR [40], WS-PSNR [41] and CPP-PSNR
[42]) and a deep learning-based FR IQA method (i.e., DeepQA
[36]). Moreover, the NR models consist of traditional NR IQA
approaches (i.e., BRISQUE [32] and BMPRI [33]) and three
deep learning-based NR IQA and OIQA methods (i.e., DB-
CNN [37], MC360IQA [49] and VGCN [50]). Among these
existing state-of-the-art objective FR image quality assessment
models, PSNR-related metrics, including PSNR, S-PSNR,
WS-PSNR and CPP-PSNR, are signal fidelity measurements
that compute the pixel differences between the reference and
distorted images. Considering the characteristics of the HVS,
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TABLE V: PERFORMANCE RESULTS FOR DIFFERENT
IMAGE DECOMPOSITION TIMES BY DHWT ON THE OIQA

AND CVIQD DATABASES.

Database OIQA CVIQD

Time SROCC PLCC RMSE SROCC PLCC RMSE

1 0.9614 0.9695 0.5146 0.9670 0.9751 3.1036
2 0.9632 0.9716 0.4962 0.9671 0.9751 3.0992
3 0.9640 0.9715 0.4986 0.9675 0.9754 3.0945

the SSIM and its variants (i.e., MS-SSIM and FSIM) extract
structural information from original and distorted images for
perceptual image quality assessment. In addition, DeepQA
considers human visual sensitivity in the deep learning frame-
work. For NR methods, the BRISQUE is based on NSS
features in the spatial domain and designed for conventional
2D IQA, and the BMPRI generates multiple pseudoreference
images and exploits local binary pattern features for quality
estimation. Additionally, the DB-CNN uses bilinear pooling
for predicting the perceptual image quality in the architecture
of CNN. It is worth noting that MC360IQA and VGCN
are two deep learning-based methods specifically designed
for 360-degree images. The MC360IQA utilizes 6 parallel
subnetworks for viewport images, while the VGCN builds the
graph convolution network based on different viewports.

Table I shows the overall performance comparisons on the
OIQA [20] and CVIQD [17], [18] databases. The best exper-
imental results are highlighted in bold. The compared perfor-
mance values are from [50]. For a fair comparison, the perfor-
mance values of traditional image quality assessment models
are tested on the used testing data. Moreover, the learning-
based models are trained on each specific 360-degree image
quality database (i.e., OIQA database or CVIQD database)
with 80% randomly selected training data and then tested on
the remaining 20% testing data. We can see that the PSNR-
based metrics are inferior to other objective models consid-
ering the HVS properties. This is a common phenomenon
because only signal errors are involved in the framework of
PSNR-related models, which is far from human perception.
The 2D IQA models show unsatisfactory performance because
they do not consider the specific characteristics of 360-degree
images, such as the multiple viewports that are important
for quality perception when browsing VR visual contents.
Moreover, deep learning-based models have advantages over
traditional objective image quality assessment approaches for
both FR and NR categories, especially MC360IQA and VGC-
N, which are two deep learning-based methods specifically
developed for VR images. In addition, our proposed MFILGN
achieves the best performance among the existing state-of-
the-art methods, including the deep learning-based OIQA and
NSS-based IQA algorithms.

C. Performance Validity of Individual Distortion Types

Since a variety of distortion types exist in current OIQA
databases, we validate the performance regarding each distor-
tion type. As shown in Table II, the performance comparisons
for individual distortion types are illustrated, and the best
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Fig. 9: The change in PLCC performance for our proposed M-
FILGN regarding different training percentages on the OIQA
and CVIQD databases.

results are denoted in bold. We can observe in this table
that our proposed MFILGN outperforms other state-of-the-
art models in terms of AVC and HEVC artifacts. For JPEG
compression distortion, we can see that VGCN delivers the
best performance. One possible explanation may be that the
selected viewports of VGCN adopt graph modeling, which
can better capture block effects caused by JPEG compression.
In addition, even compared to deep learning-based methods
specifically designed for 360-degree images (i.e., MC360IQA
and VGCN), the proposed MFILGN can still achieve promis-
ing performance in the case of JPEG artifacts.

D. Performance of Various Weighting Methods

In the proposed MFILGN framework, we first extract local
NSS features from multiple viewports. After feature extraction,
we then compute the average of these local NSS features to
obtain the final local naturalness representations for each 360-
degree image. In addition to the average weighting, there exist
some other feature aggregation strategies, such as location
weighting and content weighting [56]. To be more specific,
the location weighting strategy considers the statistics of eye-
tracking data and uses the viewing probability to serve as the
location weights for different viewport images. The content
weighting method is based on the spatial information that
reflects the spatial details of viewed regions.

We present the performance results for various weighting
strategies on the OIQA [20] and CVIQD [17], [18] databases,
as illustrated in Table III. We find that our proposed MFILGN
algorithm is insensitive to different weighting methods, which
demonstrates the robustness of the proposed model. Therefore,
for the sake of simplification, we choose the average weighting
in the proposed MFILGN.

E. Effects of Different Parameters

Since viewport extraction is involved in our model, it is
interesting to explore how the performance will be affected by
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(a) (b)

Fig. 10: Mean performance values and standard error bars for machine learning-based algorithms across 1,000 train-test trials.
(a) Run on OIQA database; (b) run on CVIQD database.

different viewport numbers to be extracted. We test the per-
formance results with respect to various viewport numbers on
the OIQA [20] and CVIQD [17], [18] databases, as shown in
Table IV. Three cases are considered, which include numbers
equal to 6, 20, and 80. As we can observe from this table,
the performance of our proposed MFILGN improves as the
number of extracted viewports increases. However, the increas-
ing viewport numbers inevitably create more computational
complexity. Thus, to find the balance between performance
and computation, 20 viewports for each 360-degree image are
utilized in our model, which is demonstrated in Fig. 8.

Furthermore, we change the DHWT decomposition times
to see if using more image decompositions will lead to
better performance. From the results listed in Table V, we
can observe that by adding the number of DHWT layers,
i.e., using more DHWT decomposition times, our model has
a small performance improvement. However, the increased
image decomposition layers may need to extract more fea-
tures, which results in more computational time. To reduce
the computational complexity, we choose one-time DHWT
for measuring multifrequency information, which can obtain
the tradeoff between performance values and computational
complexity.

In addition, we validate the change in the PLCC perfor-
mance of our proposed MFILGN regarding different training
percentages. As presented in Fig. 9, in general, a large quantity
of training data achieves a performance increase on both the
OIQA [20] and CVIQD [17], [18] databases. In the proposed
method, we choose 80%-20% for the training-testing split
because this is a common practice for perceptual quality
assessment in the literature [9], [27], [28]. In addition, since
the data distributions of the OIQA and CVIQD databases
are very different, the correlation performance for these two
databases may be disparate. Even when using 10% training
data, the MFILGN model can still deliver quite competi-
tive performance results, especially for the CVIQD database,

which further demonstrates the effectiveness of our proposed
MFILGN method. One possible explanation for the perfor-
mance differences between the two databases may be that
the OIQA database seems more challenging than the CVIQD
database.

F. Statistical Significance Analysis

Since the compared BRISQUE [32], BMPRI [33], and our
proposed MFILGN are all based on the machine learning
model called support vector regression, we repeat the pro-
cess of database splitting 1,000 times to compare the mean
and standard deviation of performance values. We show the
performance results in Fig. 10, where the mean and standard
deviations (std) of the SROCC and PLCC values across the
1,000 trials for three algorithms are illustrated. As seen in this
figure, the proposed MFILGN method can achieve a higher
mean value and smaller std compared to the others, which
further suggests that MFILGN performs more precisely and
consistently.

G. Validity of Individual Proposed Quality Measure

We explore the effectiveness of each proposed component
in the MFILGN framework, namely, multifrequency informa-
tion, local naturalness, global naturalness, and local-global
naturalness. The performance values are provided in Table
VI. We can see that the local naturalness achieves the best
performance, demonstrating the importance of viewports in
evaluating the perceptual quality of 360-degree images. In
addition, the multifrequency information measurement can be
used as a supplement to local and global naturalness features
to further improve the performance of our proposed model. E-
specially for the OIQA database, by adding the multifrequency
information measurement, the SROCC performance improves
from 0.9495 to 0.9614.
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TABLE VI: ABLATION STUDY ON THE OIQA AND CVIQD DATABASES. THE BEST RESULTS ARE DENOTED IN BOLD.

Database OIQA CVIQD

Methods SROCC PLCC RMSE SROCC PLCC RMSE

Multifrequency information 0.7734 0.7961 1.2666 0.7879 0.8285 7.8328
Global naturalness 0.9260 0.9410 0.7106 0.9520 0.9599 3.9300
Local naturalness 0.9460 0.9549 0.6195 0.9626 0.9723 3.2676

Local-global naturalness 0.9495 0.9593 0.5915 0.9657 0.9739 3.1753
Proposed MFILGN 0.9614 0.9695 0.5146 0.9670 0.9751 3.1036

TABLE VII: PERFORMANCE COMPARISONS FOR CROSS-DATABASE TESTING BY TRAINING ON THE CVIQD DATABASE
AND TESTING ON THE OIQA DATABASE. THE BEST RESULTS ARE DENOTED IN BOLD.

Database JPEG JPEG2000 ALL

Methods SROCC PLCC RMSE SROCC PLCC RMSE SROCC PLCC RMSE

MC360IQA [49] 0.8412 0.8898 4.3950 0.6221 0.6211 5.1294 0.6981 0.7443 5.9184
Proposed MFILGN 0.8889 0.9027 0.9883 0.6781 0.7107 1.5545 0.7589 0.7885 1.3864

H. Cross-Database Test

We validate the generalization capability of our proposed
MFILGN model by a cross-database test, which is widely
used to verify the model generalization ability. The CVIQD
database has more compression distortion types than the OIQA
database. Except for compression artifacts, the OIQA database
contains Gaussian blur and Gaussian noise. Following [49],
we train objective quality assessment models on the CVIQD
database and then test JPEG and JP2000 compression for
the OIQA database. The comparison results are shown in
Table VII. From this table, we can find that our MFILGN
outperforms the state-of-the-art MC360IQA model [49] for
both JPEG and JPEG2000 compression as well as the overall
performance. It is also interesting to observe that testing on
the JPEG compression distortion achieves better performance
compared to the JPEG2000 compression distortion. This is
mainly because JPEG compression is the only common distor-
tion t in both databases. In summary, we can conclude that the
proposed MFILGN method can achieve good generalization
capability.

V. CONCLUSIONS

In this paper, we present the MultiFrequency Information
and Local-Global Naturalness (MFILGN) scheme for no-
reference quality assessment of omnidirectional images. The
proposed MFILGN method is composed of two new measure-
ments, including multifrequency information measurements
and local-global naturalness measurements. We designed this
model by considering the HVS and the viewing process
of 360-degree images. Specifically, based on the frequency-
dependent property of the visual cortex, we first exploit
multifrequency channel decomposition to obtain both low-
frequency and high-frequency subbands for 360-degree im-
ages. The entropy intensities of these subbands are then
used to measure the multifrequency information. Additionally,
according to the viewing process, we adopt both local and

global naturalness features from projected ERP maps and
different viewports. The extracted features from our proposed
two measures are fused by regression learning, which can
predict the perceptual quality of omnidirectional images. We
compare our proposed MFILGN with many state-of-the-art
image quality assessment approaches on two publicly available
360-degree image quality databases. The experimental results
demonstrate the superiority of our model.

We plan to develop a parametric model based on the
proposed features and extend our method to omnidirectional
video quality assessment. Furthermore, the optimization of
VR processing systems based on our proposed blind quality
assessment model is also promising in future work.
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