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Abstract. Coronary CT Angiography (CCTA) is susceptible to var-
ious distortions (e.g., artifacts and noise), which severely compromise
the exact diagnosis of cardiovascular diseases. The appropriate CCTA
Vessel-level Image Quality Assessment (CCTA VIQA) algorithm can
be used to reduce the risk of error diagnosis. The primary challenges
of CCTA VIQA are that the local part of coronary that determines
final quality is hard to locate. To tackle the challenge, we formulate
CCTA VIQA as a multiple-instance learning (MIL) problem, and ex-
ploit Transformer-based MIL module (termed as T-MIL) to aggregate
the multiple instances along the coronary centerline into the final qual-
ity. However, not all instances are informative for final quality. There are
some quality-irrelevant/negative instances intervening the exact qual-
ity assessment(e.g., instances covering only background or the coronary
in instances is not identifiable). Therefore, we propose a Progressive
Reinforcement learning based Instance Discarding module (termed as
PRID) to progressively remove quality-irrelevant/negative instances for
CCTA VIQA. Based on the above two modules, we propose a Reinforced
Transformer Network (RTN) for automatic CCTA VIQA based on end-
to-end optimization. The experimental results demonstrate that our pro-
posed method achieves the state-of-the-art performance on the real-world
CCTA dataset, exceeding previous MIL methods by a large margin.

Keywords: Image Quality Assessment · CCTA · Reinforced Learning ·
Transformer.

1 Introduction

Coronary Computed Tomography Angiography (CCTA) plays an important role
in the diagnosis of cardiovascular diseases for providing vital visual clues. How-
ever, the CCTA images are easily degraded by various factors (i.e., breathing
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motion artifacts and insufficient contrast agent dose) and contain hybrid distor-
tions [11], which inevitably affects the subsequent analysis of doctors [5]. When
artifacts appear in the coronary artery stenosis, it is difficult for doctors to diag-
nose stenosis [8]. To ensure accurate diagnosis, it is necessary to provide doctors
with high-quality CCTA images. Therefore, there is an urgent need to develop
CCTA Vessel-level Image Quality Assessment (CCTA VIQA) algorithms.

With the rapid development of machine learning, the seminal work [18]
maps hand-crafted global and local features (i.e., noise, contrast, misregistra-
tion scores, and un-interpretability index) of coronary arteries onto quality scores
through machine learning algorithms. However, its input features are not rich
since they only include four types of image characteristics, which always causes
the sub-optimal performance and lacks of enough flexibility. Also, quality met-
ric [13,14] designed for natural image are not suitable for medical image. During
the dataset annotation process, the professional doctors only provide the vessel-
level label when browsing the complete CT. So no position labels are provided
for quality relevant regions and the key local parts that determine the vessel-
level quality are hard to locate, which shows CCTA VIQA is an obvious weakly-
supervised problem [24]. So the quality relationship between various local parts of
coronary arteries in CCTA image can be excavated by modeling CCTA VIQA as
a multiple-instance learning (MIL) problem. Therefore, we propose Transformer-
based MIL backbone (T-MIL) in CCTA VIQA. Specifically, since the quality of
CCTA images is only associated with the coronary arteries, we utilize the cen-
terline tracking algorithm [21] to detect the regions of coronary arteries. Then
we define 3D cubes cropped along the vessel centerline as instances. Finally, the
discriminative features from multiple instances extracted by 3D convolutional
neural networks are aggregated into the quality space through the latest net-
work architecture, i.e., transformer. Recently, there are various instance aggre-
gators in MIL methods, like attention [6,15,10], RNN [2], sparse convolution [9],
and graph [23]. Specially, transformer-based MIL frameworks [7,17,19,22] have
achieved remarkable success in a broad of medical tasks, such as whole slide
image classification.

Although the instances (i.e., cubes) have covered all possible quality-associated
contents, the quality-irrelevant contents also infiltrate the instances severely,
which is detrimental for the estimation of overall quality. For instance, the
quality-related cubes only take a small proportion of all cubes. According to
our observation, there are three typical cases of quality-irrelevant instances i.e.,
the instance that does not match the vessel-level label, the coronary in instances
is not identifiable, and the instance contains only background. To remove these
negative instances while mining the most informative instances, we propose a
Progressive Reinforcement learning based Instance Discarding module (termed
as PRID) to preserve informative instances as the inputs of the transformer.
The reinforcement learning (RL) agent from PRID accepts the output feature
embedding of transformer as states, and selects one instance to discard. Then we
input the new instance set into T-MIL to obtain the states (both in training and
testing) for the next iteration and the reward (just for training) to refine cur-
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rent action. We call the T-MIL together with PRID as Reinforced Transformer
Network, which is denoted as RTN. We summarize our contributions as follows.

– To our knowledge, we propose the first fully automatic CCTA VIQA al-
gorithm RTN based on end to end optimization. We formulate the CCTA
VIQA as the typical MIL problem, and introduce transformer to aggregate
multiple instances and map them to final quality.

– To elide the intervention from quality-irrelevant/negative isntances, we pro-
pose a progressive reinforced learning based instance discarding strategy (i.e.,
PRID) to mine the most informative instances for transformer network.

– Extensive experimental results reveal that our proposed RTN achieves the
state-of-the-art (SOTA) performance on hospital-built CCTA dataset, ex-
ceeding previous MIL methods by a large margin.

Fig. 1. Our RTN includes two modules: (a) Progressive Reinforcement Learning based
Instance Discarding (PRID), (b) Transformer-based MIL Backbone (T-MIL).

2 Methods

Fig. 1 depicts the overall framework of RTN for the CCTA VIQA task, which is
composed of two basic modules i.e., Progressive Reinforcement Learning based
Instance Discarding (PRID) and Transformer-based MIL Backbone (T-MIL).
Given one CCTA image, we first collect the cubes cropped along the coronary
centerline as instances. Then PRID module employs a reinforcement learning
(RL) agent to determine which instance should be discarded progressively. After
obtaining the most informative instances, T-MIL is devoted to classifying the
final vessel-level quality grade. In the following sections, we will clarify the T-MIL
and PRID of our RTN from both implementation and principal perspectives.
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2.1 Transformer-based MIL

Multiple-instance learning (MIL) is a strong tool to solve weakly-supervised
problem. In the definition of MIL, a set of multiple instances can be regarded
as a bag and only bag-level label is provided. In our method, we define the ith

3D cube sampled on the coronary artery centerline as an instance xi, and the
whole coronary artery region is taken as a bag B = {xi|1 ≤ i ≤ n}. Then the
perceptual quality y of whole coronary B is:

y(B) = h(f(x1), f(x2), ..., f(xi), ..., f(xn)), 1 ≤ i ≤ n (1)

Where, xi ∈ RC1×D×H×W is the ith instance in the bag B. T-MIL contains f(.)
and h(.), which are separately as instance feature extractor and transformer-
based aggregator. In this paper, the instance feature extractor f is composed of
several 3D convolution based residual blocks [3] and flatten operation.

Transformer-based Aggregator. To capture the long-range dependency be-
tween different instances, we employ the transformer architecture in ViT [4] as
the aggregator of MIL. As shown in Fig. 1 each transformer encoder layer is
consist of multi-head self-attention (MHSA) layer and feed-forward (FF) layer.
We follow the ViT [4] and add the quality token c0(B) to the instance token
groups. The input token embeddings can be written as:

z0 = [c0(B), f(x1), f(x2), ..., f(xi), ..., f(xn)], 1 ≤ i ≤ n. (2)

In MHSA, we firstly transform instance embedding to key K, query Q and
value V , and then calculate the similarity of key and query as attention weight
matrix. The matrix’s each item means dependencies between any pair of in-
stances. The output of MHSA contains aggregation information, especially qual-
ity token embedding that aggregates the contribution of each instance to final
vessel-level quality prediction.The full process of the lth transformer layer is as
follows, in which LN is layernorm and MLP includes two fully-connected layers
with a GELU non-linearity:

z
′

l = MHSA(LN(zl−1)), l = 1, 2, ...L

zl = MLP (LN(z
′

l)) + z
′

l , l = 1, 2...L
(3)

After feeding input token embedding into L transformer layers, we can obtain
the output token embeddings zL ∈ R(n+1)×D, in which D is the dimension of
the token embedding. The first quality token embedding cL(B) = zL[0] is used
to quality classification and following instance embedding bL = zL[1, 2, ..., n]
can be used as the states of PRID, in which the instance embeddings bL can be
understood as features of n instances in one vessel extracted by T-MIL.

2.2 PRID

To reduce the intervention of negative instances (e.g., the instance that do not
match vessel-level labels or the instance contains only background), we propose
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Fig. 2. The agent network of PRID, contains common Pooling by Multi-Head Atten-
tion(PMA) module and various MLP layers.

to utilize reinforcement learning (RL) agent to adaptively identify them and dis-
card them progressively [20]. Specifically, we model the process of progressively
instance discarding as a Markov Decision Process (MDP) [1,12] and introduce
a RL agent to obtain the optimal solution for it. The state, action, reward and
agent in RL are clarified clearly as follows.

States. As shown in Fig. 2, in the tth iteration, the state st is defined as the
output instance embedding bL(t − 1) ∈ R(n−t+1)×D of the (t − 1)th iteration’s
transformer layer, since the features captured by transformer are more represen-
tative for quality prediction.

Action. Action at is the instance index that is discarded within the scope of the
instance set. In the t-th iteration, the action search space A = {1, 2, ..k, ..., n−t+
1} is the current instances’ index list. The agent’s output probability vector pt ∈
Rn−t+1can be regarded as the selected distribution of current instance set. Thus
we can encode action as multinomial distribution sampling when training and
top one sampling when testing, the selected k is equal to action: k = sample(pt).
The state st transforms to st+1 through the action because of changes in the
instance set: {xi}n−t+1

i=1 −→ {xi}n−t+1
i=1,i̸=k.

Reward. The reward rt need to reflect the effect of transforming from the state
st to st+1 due to the action. After discarding one instance, we feed new instance
set into the pre-trained T-MIL and compare the new predicted result with the
label to calculate the reward (t > 1):

rt =


2, if yt = label and yt−1 = label

1, if yt = label and yt−1 ̸= label

−1, if yt ̸= label and yt−1 = label

−2, if yt ̸= label and yt−1 ̸= label

(4)
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In the first selection, the predict result y1 need to compare with label. If
the prediction is correct, give a positive reward (+1), otherwise give a negative
reward (−1). In the next choice, as the Eq. 4 shown, the value of reward is not
only related to the accuracy of the current selection’s prediction result, but also
to the last selection’s result. This is because in the MDP problem, the current
selection (iteration) is related to the last selection (iteration).

Agent. As shown in Fig. 2, the agent in PRID receives the states from T-
MIL. We first aggregate the n tokens of states into one token through PMA
module PMA(.) [7]. In the tth iteration, this module sets a learnable embedding
I ∈ R1×D as a query, and directly regards the instance embedding bL(t − 1) ∈
R(n−t+1)×D as key and value to calculate a attention matrix of 1 × (n − t + 1)
dimension to gather these feature embedding. Similarly, the cross attention here
is also implemented in the form of multi-head. Then we feed the fused token into
the MLP head gt(.) to obtain the probability vector pt ∈ Rn−t+1. Note that in
tth iteration, we will use tth MLP head gt(.):

pt = gt(PMA(bL(t− 1))) (5)

Instance Discarding Strategy. The implementation requires above two mod-
ules: PRID and T-MIL. In the first stage, we need to pre-train the T-MIL by
randomly selecting n−m instances from n instances. Secondly, fix the parame-
ters of T-MIL and update the agent’s parameter through m progressive selections
through interaction with T-MIL. At each iteration, we can obtain the selected
index (k) probability from distribution pt and reward rt, so the training loss is

loss = −
∑m

t=1
log(pt[k])× rt (6)

Table 1. Performance comparisons with state-of-the-arts on the CCTA dataset.

MIL methods Accuracy AUC
AttentionMIL [6] 0.7574 0.7576

MIL-RNN [2] 0.7322 0.6842
CLAM [15] 0.7761 0.7161
DSMIL [10] 0.6917 0.5378

T-MIL (ours) 0.8036 0.7658
RTN(PRID+T-MIL) (ours) 0.8546 0.8461

3 Experiment

3.1 Implementation Details

Our CCTA VIQA dataset is collected with the help of a partner hospital, where
the vessel-level quality labels of each CCTA image are provided by experienced
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imaging doctors and the resolution (i.e., 512 × 512) of CCTA slices along axis
is commonly used in the hospital. There are two quality levels in our dataset
i.e., “1” and “0”. “1” means the CCTA image is high-quality and accepted by
doctors, while “0” represents the CCTA image is low-quality and cannot be used
for diagnosis. The dataset consists of 80 CCTA scans from 40 patients in both
systole and diastole, which can generate 210 coronary branches by the centerline
tracking algorithm [21]. The centerline algorithm realizes the rough detection
of coronary region, and the rough detection accuracy can reach 94%, which has
little influence on the subsequent VIQA. Therefore, our dataset contains 210
pairs of coronary branches and vessel-level quality labels, where the ratio of
label “1” and label “0” is 114/96. And we possibly plan to make this CCTA
VIQA dataset public later.

We adopt the numbers of instances (i.e., cubes) n in MIL as 19, which are
uniformly cropped along the vessel centerline. All cubes are with the size of
20 × 20 × 20 and cover the whole coronary artery branch.We also augment the
data by moving the cube’s center point randomly to three voxels in any direction
along 6 neighborhoods as in [16]. We follow the 5-fold cross validation setting
with 80% of data for training and 20% for testing in each split. Both T-MIL
and PRID are implemented with Pytorch and trained on one NIVDIA 1080Ti
GPU. In the training process, we first train T-MIL for 200 epoches with the
batchsize 2. Then, we optimize the PRID module for 400 epoches with batchsize
2. We utilize two metrics of quality classification at vessel level to measure the
effectiveness of the proposed framework: Accuracy and Area Under the Curve
(AUC) scores. Moreover, the best selection of instance discarding number m is
based on experiments. And m pick 14 as baseline.

Table 2. Performance comparison with different discarding numbers and discarding
strategies in RTN on the CCTA dataset.

Discarding Number PRID(Accuracy/AUC) Random(Accuracy/AUC)
4 0.7964/0.7777 0.7682/0.7409
9 0.8253/0.7674 0.8007/0.7567
14 0.8546/0.8461 0.8107/0.7994

Table 3. Performance comparison with different pooling module in agent network of
RTN on the CCTA dataset and different cube size on one vessel.

Pooling Module Accuracy AUC Crop Size Accuracy AUC
PMA 0.8546 0.8461 15 0.8042 0.7459

Avg Pooling 0.8443 0.8257 20 0.8546 0.8461
Max Pooling 0.8273 0.8198 30 0.8510 0.8668
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3.2 Comparisons with State-of-the-arts

We compare our methods with the state-of-the-art MIL methods on our dataset,
including attention-based MIL [6], RNN-based MIL [2], attention-based and
cluster-based MIL [15], non-local attention based MIL [10]. In order to ensure
fairness, the feature extraction process of the above methods shares the same
two layers of 3D residential blocks. As shown in Table 1, transformer-based
MIL exceeds the second best method CLAM [15] by 2.75%, thanks to its bet-
ter long-range relationship modeling capability. Furthermore, our proposed RTN
achieves the best performance, outperforming previous MIL-based methods by
7.85%, which reveals the effectiveness of our PRID. In other words, discarding
quality-irrelevant instances is vital for CCTA VIQA. See supplementary mate-
rial, the visualization of index distribution of discarded instance and remained
instance shows that only limited instances will play a role in CCTA VIQA.

Fig. 3. Example of instance discarding with label “1”. Three rows represent views in
axial, sagittal, and coronal orientations from all 3D cubes on the coronary artery, among
them, the blue box is the case where the coronary in instances is not identifiable, and
the red box is the case with obvious distortion.

3.3 Ablation Study

In this section, we verify the effectiveness of our proposed PRID from four as-
pects: the number of discarding instances, discarding strategy, pooling operations
and cube size. Table 2 shows the comparison results of different discarding num-
bers and different discarding strategies. According the results, the discarding
number m = 14 is the best solution. This is because after iterative discarding,
the five instances with the most information are retained at last, which will make
it easier for network to classify, as shown in Fig. 3. We also compare the PRID
with random discarding strategy in Table 2. Our PRID exceeds random discard-
ing strategy by a large margin regardless of the discarding number, which reveals
the effectiveness of our PRID on instance selection. In Table 3, we compare the
different pooling operations for RL agent in PRID. We can draw a conclusion
that PMA has a stronger aggregation ability to input instance embedding. This
also shows that it is more explanatory to aggregate tokens through cross atten-
tion [7]. The comparison of different cube size in Table 3 shows that the cubes
with small size cannot cover the whole vessel and the cubes with larger size will
contain a little more quality-unrelated content.
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4 Conclusion

In this paper, we present a novel Reinforced Transformer Network(RTN) model
for CCTA VIQA, which contains two modules: Transformer-based MIL back-
bone (T-MIL) and Progressive Reinforcement learning based Instance Discard-
ing module (PRID). T-MIL can solve the challenge that local part of coronary
that determines final quality is hard to locate. Moreover, PRID can overcome
the intervention from quality-irrelevant/negative instances. Compared with pre-
vious MIL methods, our RTN has achieved great improvement. In the future, we
plan to adaptively select the number of discarded instances, which will continue
to be improved in the later work and put into clinical use.
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of China 2018AAA0101400.

References

1. Bellman, R.: A markovian decision process. Journal of mathematics and mechanics
pp. 679–684 (1957)

2. Campanella, G., Hanna, M.G., Geneslaw, L., Miraflor, A., Werneck Krauss Silva,
V., Busam, K.J., Brogi, E., Reuter, V.E., Klimstra, D.S., Fuchs, T.J.: Clinical-
grade computational pathology using weakly supervised deep learning on whole
slide images. Nature medicine 25(8), 1301–1309 (2019)

3. Chen, S., Ma, K., Zheng, Y.: Med3d: Transfer learning for 3d medical image anal-
ysis. arXiv preprint arXiv:1904.00625 (2019)

4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

5. Ghekiere, O., Salgado, R., Buls, N., Leiner, T., Mancini, I., Vanhoenacker, P.,
Dendale, P., Nchimi, A.: Image quality in coronary ct angiography: challenges and
technical solutions. The British journal of radiology 90(1072), 20160567 (2017)

6. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning.
In: International conference on machine learning. pp. 2127–2136. PMLR (2018)

7. Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: Set transformer: A
framework for attention-based permutation-invariant neural networks. In: Interna-
tional Conference on Machine Learning. pp. 3744–3753. PMLR (2019)

8. Leipsic, J., Labounty, T.M., Heilbron, B., Min, J.K., Mancini, G.J., Lin, F.Y.,
Taylor, C., Dunning, A., Earls, J.P.: Adaptive statistical iterative reconstruction:
assessment of image noise and image quality in coronary ct angiography. American
Journal of Roentgenology 195(3), 649–654 (2010)

9. Lerousseau, M., Vakalopoulou, M., Deutsch, E., Paragios, N.: Sparseconvmil:
Sparse convolutional context-aware multiple instance learning for whole slide image
classification. In: MICCAI Workshop on Computational Pathology. pp. 129–139.
PMLR (2021)



10 Y. Lu et al.

10. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for
whole slide image classification with self-supervised contrastive learning. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 14318–14328 (2021)

11. Li, X., Jin, X., Lin, J., Liu, S., Wu, Y., Yu, T., Zhou, W., Chen, Z.: Learning disen-
tangled feature representation for hybrid-distorted image restoration. In: European
Conference on Computer Vision. pp. 313–329. Springer (2020)

12. Littman, M.L.: Reinforcement learning improves behaviour from evaluative feed-
back. Nature 521(7553), 445–451 (2015)

13. Liu, J., Li, X., Peng, Y., Yu, T., Chen, Z.: Swiniqa: Learned swin distance for com-
pressed image quality assessment. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 1795–1799 (2022)

14. Liu, J., Zhou, W., Xu, J., Li, X., An, S., Chen, Z.: Liqa: Lifelong blind image
quality assessment. arXiv preprint arXiv:2104.14115 (2021)

15. Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood,
F.: Data-efficient and weakly supervised computational pathology on whole-slide
images. Nature biomedical engineering 5(6), 555–570 (2021)

16. Ma, X., Luo, G., Wang, W., Wang, K.: Transformer network for significant stenosis
detection in ccta of coronary arteries. In: International Conference on Medical Im-
age Computing and Computer-Assisted Intervention. pp. 516–525. Springer (2021)

17. Myronenko, A., Xu, Z., Yang, D., Roth, H.R., Xu, D.: Accounting for dependen-
cies in deep learning based multiple instance learning for whole slide imaging. In:
International Conference on Medical Image Computing and Computer-Assisted
Intervention. pp. 329–338. Springer (2021)

18. Nakanishi, R., Sankaran, S., Grady, L., Malpeso, J., Yousfi, R., Osawa, K., Ce-
poniene, I., Nazarat, N., Rahmani, S., Kissel, K., et al.: Automated estimation
of image quality for coronary computed tomographic angiography using machine
learning. European radiology 28(9), 4018–4026 (2018)

19. Shao, Z., Bian, H., Chen, Y., Wang, Y., Zhang, J., Ji, X., et al.: Transmil:
Transformer based correlated multiple instance learning for whole slide image
li2021dsmilclassification. Advances in Neural Information Processing Systems 34
(2021)

20. Tang, Y., Tian, Y., Lu, J., Li, P., Zhou, J.: Deep progressive reinforcement learning
for skeleton-based action recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 5323–5332 (2018)

21. Wolterink, J.M., van Hamersvelt, R.W., Viergever, M.A., Leiner, T., Išgum, I.:
Coronary artery centerline extraction in cardiac ct angiography using a cnn-based
orientation classifier. Medical image analysis 51, 46–60 (2019)

22. Yu, S., Ma, K., Bi, Q., Bian, C., Ning, M., He, N., Li, Y., Liu, H., Zheng, Y.: Mil-vt:
Multiple instance learning enhanced vision transformer for fundus image classifi-
cation. In: International Conference on Medical Image Computing and Computer-
Assisted Intervention. pp. 45–54. Springer (2021)

23. Zhao, Y., Yang, F., Fang, Y., Liu, H., Zhou, N., Zhang, J., Sun, J., Yang, S., Menze,
B., Fan, X., et al.: Predicting lymph node metastasis using histopathological images
based on multiple instance learning with deep graph convolution. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
4837–4846 (2020)

24. Zhou, Z.H.: A brief introduction to weakly supervised learning. National science
review 5(1), 44–53 (2018)


	RTN: Reinforced Transformer Network for Coronary CT Angiography Vessel-level Image Quality Assessment

