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A B S T R A C T   

Multi-exposure fusion (MEF) takes a sequence of images with different exposure levels as input and generates a 
fused image that is more informative and perceptually appealing than any of the input images as output. During 
the past decades, many MEF algorithms have been proposed. Therefore, how to effectively compare the per
formance of different MEF algorithms is of great significance. Despite of this, research efforts on objective image 
quality assessment (IQA) of MEF images remain limited. In this paper, we propose a novel full-reference (FR) IQA 
method for MEF images by generating Local and Global Intermediate References (LGIR) from the input multiple 
images. Specifically, the intermediate reference features are synthesized in gradient domain, structural tensor 
domain, and global perception domain, respectively. The gradient and structure tensor domains reflect the local 
structural perception of the human visual system (HVS), while the global perception domain integrately con
siders the overall perception. In each domain, a single quality measure is estimated to reflect the visual quality of 
the fused image from a specific perspective. In addition, on considering the multi-scale property of the HVS, we 
estimate those quality measures at multiple scales, and fuse them together to predict the final quality score. 
Experimental results demonstrate the superiority of LGIR, achieving higher consistency with subjective quality 
scores than existing relevant FR-IQA methods.   

1. Introduction 

Multi-exposure fusion (MEF) aims to fuse a sequence of low dynamic 
range (LDR) images with different exposure levels to obtain a fused 
image with high dynamic range (HDR) imaging effects [1,2,3]. With 
MEF, the fused image contains richer information such as finer details 
and more appealing colors than any of the input image. In general, the 
MEF technology has a wide range of applications. For example, it can 
enhance the image display effects and the fused image can be displayed 
on common devices without expensive HDR displays. Compared with 
tone mapping [4,5,6], which firstly constructs HDR images from multi- 
exposure image sequences and then converts HDR images back into LDR 
images for display, the MEF bypasses constructing HDR images and has 
more advantages in computational efficiency. 

Due to the success of the pyramid structure proposed in [7], MEF has 

gradually attracted lots of research attentions and many MEF algorithms 
have been proposed during the past decades [8,9,10,11,12,13]. With 
many MEF algorithms at hand, it becomes vital to compare their per
formance, so as to select the best-performing algorithm as well as di
rections for further advancement. In addition, it is found that none of the 
existing MEF algorithms can achieve ideal results for all multi-exposure 
image sequences [14]. Therefore, it is important to fairly compare the 
performance of different MEF algorithms and flexibly select the best 
fused result under different scenarios. Since the human visual system 
(HVS) is the ultimate receiver in most applications, subjective evalua
tion is considered as the most straightforward and reliable way for MEF 
image quality evaluation [14]. However, subjective evaluation is always 
time-consuming and laborious, which are also hard to be embedded into 
online systems for optimizing MEF algorithms. Thus, it is important to 
design efficient objective image quality assessment (IQA) methods to 

☆ This paper was recommended for publication by Prof. Guangtao Zhai. 
* Corresponding author. 

E-mail address: jiangqiuping@nbu.edu.cn (Q. Jiang).   
1 Authors contributed equally. 

Contents lists available at ScienceDirect 

Displays 

journal homepage: www.elsevier.com/locate/displa 

https://doi.org/10.1016/j.displa.2022.102188 
Received 25 December 2021; Received in revised form 25 February 2022; Accepted 10 March 2022   

mailto:jiangqiuping@nbu.edu.cn
www.sciencedirect.com/science/journal/01419382
https://www.elsevier.com/locate/displa
https://doi.org/10.1016/j.displa.2022.102188
https://doi.org/10.1016/j.displa.2022.102188
https://doi.org/10.1016/j.displa.2022.102188
http://crossmark.crossref.org/dialog/?doi=10.1016/j.displa.2022.102188&domain=pdf


Displays 74 (2022) 102188

2

replace the role of subjective evaluation. 
According to the participation of the reference information, objective 

IQA methods can be divided into three types: full-reference (FR) 
[15,16,17,18,19,20,21,22,23,24,25], reduced-reference (RR) [26,27], 
and no-reference (NR) [28,29,30,31,32,33,34,35,36,37,38,39]. 
Although many FR-IQA algorithms have been proposed during the last 
two decades [40], they cannot be directly applied to MEF images 
because there are multiple reference images and only one single fused 
image [41]. It means that the dimensions of the reference image and the 
distorted/fused image (to-be-evaluated) are not consistent. Therefore, 
the fused image cannot be directly compared with the reference images 
and the key to the success of FR-IQA metrics for MEF images is to extract 
and aggregate effective intermediate reference information from mul
tiple reference images, so as to enable the FR comparison between the 
fused image and reference images [41]. 

In this paper, inspired by the global-to-local perception mechanism 
of the HVS, we propose a FR-IQA method for MEF images by generating 
Local and Global Intermediate References (LGIR) from the input multi
ple reference images. Specifically, for the input image sequence with 
different exposure levels, proper intermediate reference information is 
extracted in gradient domain, structure tensor domain, and global 
perception domain, respectively. The gradient and structure tensor do
mains reflect the local structural perception of the HVS, while the global 
perception domain integrately considers the overall perception. In each 
domain, a single quality measure is derived to reflect the visual quality 
of the fused image from a specific perspective. On considering the multi- 
scale perception of the HVS, we estimate those quality measures at 
multiple scales, and fuse all the quality measures together to predict the 
final quality score via support vector regression (SVR). Experimental 
results show that compared with the existing FR-IQA algorithms, the 
objective quality scores predicted by LGIR are more consistent with 
subjective quality scores. Besides, we also apply LGIR to automatic 
parameter tuning of an existing MEF algorithm. Numerical experiments 
indicate that LGIR provides a useful tool to exploit the parameter space 
and to pick the optimal parameter set that produces MEF image with the 
best visual quality. 

2. Related work 

In this section, we review the existing related work, mainly introduce 
some existing image fusion algorithms and image quality evaluation 
algorithms. 

2.1. Multi-exposure image fusion algorithm 

Some MEF algorithms have been proposed. For example, a simple 
method using local and global energy weighting, Burt et al., [42] applied 
Laplacian pyramid decomposition to multi-exposure image fusion, the 
weights are obtained by calculating the local energy of the image pyr
amid. The Laplacian pyramid is widely applied to the field of image 
fusion. It can effectively avoid unnatural artifacts in the spatial domain 
of the fused image. Similarly, Wang et al., [43] calculates the weight 
map from three aspects of exposure, contrast and saturation, decompose 
the multi-exposure image by the Laplacian pyramid and decompose the 
weighting map by Laplacian pyramid, Finally, multiply the multi- 
exposure image by the weighting map to get the fusion image. Gosh
tasby et al., [44] divided images with different exposures into many 
different small patches, and then selected the patch with the largest 
image entropy as the patch corresponding to the fused image. However, 
due to the limitations of the segmentation method, the fused image will 
have a certain block effect. thereby affecting the image quality. Zhang 
et al., [45] guided the generation of the weight map by calculating the 
gradients of the multi-exposure images and using the gradient infor
mation to calculate the correlation between the images with different 
exposures. This algorithm can enhance the details in the fused images. 
According to the characteristics of multi-exposure images, Ma et al., 

[46] proposed a structure patch decomposition method, which de
composes the image block into three components: signal intensity, signal 
structure and average intensity. Then fuses these three components to 
reconstruct image patch. This method has better robustness to image 
ghosting. 

2.2. Fusion image quality evaluation algorithm 

Although many image fusion algorithms have been proposed, some 
databases have also been established gradually [47]. There is still a lack 
of research on the complete and comprehensive quality evaluation of 
these algorithms. Usually, in order to verify the effectiveness of the 
fusion method, it is necessary to manually judge the quality of the fusion 
image. In order to avoid this time-consuming and laborious manual 
method, it is important to develop a multi-exposure fusion image quality 
evaluation algorithm. For example, Qu et al., [48] evaluates the quality 
of the fused image by calculating the mutual information between the 
original image and the fusion image. Considering that the human visual 
system is very sensitive to the edge of the image, some evaluation 
methods based on edge information have been proposed one after 
another. Xydea et al., [49] uses the Sobel edge operator to extract the 
edge information of the original image and the fused image respectively, 
then calculates the edge loss between different original images and the 
fused image as features, finally fuses the features to calculate the quality 
score. Piella et al., [50] considered the influence of structural informa
tion such as image clarity and image entropy on image quality, and 
calculated the saliency map to weight the feature map and proposed a 
new quality evaluation model. However, the above assessment algo
rithms for fusion images are not consider particularity of MEF images. 
For accurate assessment the visual quality of MEF images. Ma et al., [41] 
established a MEF image quality evaluation database and proposed an 
objective quality evaluation algorithm for MEF images. First, the author 
believes that images can be decomposed into three parts: contrast, 
structure and brightness. Then, the reference image is reconstructed by 
enhanced contrast and structural components of the multi-exposure 
image. Finally, calculate the SSIM between the reference image and 
the fused image to get the quality score. This algorithm shows good 
performance on the newly established MEF image quality evaluation 
database. 

3. Proposed method 

3.1. Problem formulation 

In the context of IQA, given a distorted (to-be-evaluated) image Id 
and its corresponding reference image Ir, the general pipeline of FR-IQA 
involves two key steps: 1) feature extraction (F) from Id and Ir; and 2) 
similarity/distance measure (S) between F(Id) and F(Ir), to derive the 
final quality score Qd as follows: 

Qd = S(F(Id),F(Ir) ) (1) 

For the FR-IQA of MEF images, the distorted image is a single image 
fused by a certain MEF algorithm. Here, we denote this to-be-evaluated 
MEF image as Imef . However, the reference information is not a single 
image. Instead, it is a sequence of multi-exposure images with different 
exposure levels, which is represented by {Im|m = 1, 2,⋯,M} where M is 
the number of reference images or exposure levels. In order to conduct 
FR-IQA, we need to aggregate the features extracted from multiple 
reference images to build proper intermediate reference information 
which can be easily compared with the same kind of features extracted 
from the (single) fused image. Afterwards, the similarity/distance be
tween the aggregated intermediate reference information and the cor
responding information extracted from the fused image is calculated. 
The above processes can be formulated as follows: 

Qmef = S
(
F
(
Imef
)
,A(F(I1),F(I2),⋯,F(IM))

)
(2) 
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here A represents a specific feature aggregation scheme. For better un
derstanding, the comparison between traditional FR-IQA and MEF FR- 
IQA pipelines are illustrated in Fig. 1. 

Considering that different image features have different influences 
on perceptual quality, it is critical to design effective aggregation stra
tegies (A) for different features. In our proposed method, we consider 
two kinds of features (local and global) and design three different feature 
aggregation schemes (maximum gradient, structure tensor, and pyramid 
fusion) to build intermediate reference information from the input multi- 
exposure image sequence. In what follows, we first give a brief overview 
of the proposed MEF FR-IQA method and then illustrate each step with 
details. 

3.2. Overview 

In this work, we propose a novel FR-IQA metric called LGIR for MEF 
images from the perspective of characterizing the global-to-local image 
perception mechanism of the HVS. In the proposed method, we extract 
image features from both local and global aspects and apply different 
feature aggregation schemes to generate corresponding intermediate 
references. Specifically, the image gradient magnitude map and Jaco
bian matrix are built to represent the local features, while the multi- 
exposure image sequence itself is directly regarded as the global 
feature. For the gradient magnitude maps, we compute the maximum 
gradient to aggregate the gradient magnitude maps of the multiple 
reference images to obtain the maximum gradient feature Gmax as one 
local reference. For the Jacobian matrix, we apply the structure tensor 
operator to convert the Jacobian matrix of the corresponding pixels in 
multiple reference images into a unified structure tensor representation 
Zr as another local reference. For the multi-exposure image sequence 
itself, we aggregate them via pyramid fusion to obtain a global reference 
image Igr. In a similar way, these features are also extracted from the 
MEF image, as denoted by Gmef , Zmef , and Imef , respectively. Then, the 
perceptual 

similarity/distance scores between the generated intermediate 
reference features and the corresponding features extracted from the 
MEF image are calculated, yielding three quality measure scores (i. 
e.,Qlgs, Qlst , and Qgps). In addition, on considering the multi-scale 
perception of the HVS, we estimate those quality measure scores at 

multiple scales, and fuse all the quality measure scores to predict the 
final quality via SVR. The diagram of our proposed LGIR is shown in 
Fig. 2. For conciseness, only the single-scale version is depicted and the 
details regarding the multiple-scale version will be illustrated in Section 
II-E. 

3.3. Local reference information 

3.3.1. Maximum gradient 
Image gradient reflects the change degree/intensity of local neigh

borhood pixel values. The direction of image gradient indicates the 
fastest direction of pixel change. Moreover, the edge positions of images 
usually have larger gradient values. At the same time, in regions where 
image details are less and smoother, image pixel values change less, and 
the corresponding gradient values of these areas could also decrease. In 
image processing field, the gradient of an image usually refers to 
gradient modulus. To obtain the edge or texture information of reference 
image sequences and reduce the influence of brightness, commonly-used 
operators to calculate image gradient include Prewitt, Roberts, Scharr, 
and Sobel operators. In general, we use these operators to calculate the 
difference between neighboring pixels to approximate the derivative of 
the image. In our work, the horizontal gradient map Gx is obtained by 
the convolution operation: Gx = Sx ⊗ I where I represents the target 
image and ⊗ is the convolution opera-tion. Sx is the Sobel operator: 

Sx =

⎡

⎣
1 2 1
0 0 0
− 1 − 2 − 1

⎤

⎦ (3) 

Similarly, we use the transposition of Sx to calculate the vertical 
gradient map Gy by Gy = Sy ⊗ Iwhere Sy = ST

y After obtaining the hor
izontal and vertical gradient magnitudes, the gradient magnitude of the 
pixel (i, j) is defined by: 

G(i, j) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Gx(i, j)2
+ Gy(i, j)2

√

, (4)  

where Gx(i, j) and Gy(i, j) are the pixel values of horizontal and vertical 
gradient maps at the pixel (i, j). Using Eq. (4), we can compute the 
gradient magnitude maps of all reference image and the to-be-evaluated 
MEF image, as denoted by {G1,G2,⋯,GM} and Gmef , respectively. 

In general, the visibility of image details is closely related to the 
gradient magnitude, i.e., larger magnitude of pixel gradient indicates 
higher visibility and vice versa. That is, the image regions with larger 
magnitude of pixel gradient is usually more visible and clearer. There
fore, the maximum gradient of pixels corresponding to multi-exposure 
image sequences is taken as the best gradient magnitude under the 
real scene conditions, which is computed as follows: 

Gmax(i, j) = max{G1(i, j),G2(i, j),⋯,GM(i, j) } (5) 

The derived maximum gradient map Gmax can be regarded as the 
reference/ideal gradient information which is expected to be well 
retained in the MEF image. Thus, by measuring the similarity between 
the maximum gradient map derived from the input multi-exposure 
image sequences and the gradient map derived from the to-be- 
evaluated MEF image, the quality score of the MEF image in terms of 
the local gradient information is thus obtained. 

Since the structural similarity is well-known to estimate the 
perceptual similarity between two images, here we calculate the simi
larity between the maximum gradient map Gmax and the gradient map of 
the to-be-evaluated MEF image Gmef as: 

S
(
Gmax,Gmef

)
=

2μGmax
μGmef

+ c1

μ2
Gmax

+ μ2
Gmef

+ c1
∙
2σGmaxGmef + c2

σ2Gmax
+ σ2Gmef + c2

, (6)  

where μGmax
, μGmef

, σ2
Gmax

, σ2
Gmef

, and σGmaxGmef represent the local mean of 
Gmax and Gmef , the local variance of Gmax and Gmef , and the local Fig. 1. Comparison between traditional FR-IQA and MEF FR-IQA pipelines.  
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covariance between Gmax and Gmef , respectively. In addition, c1 and c2 

are small positive stability constants that account for the saturation ef
fects of the HVS at extremely low luminance and contrast. 

With this similarity, we can assess the local gradient quality of the 
fused image. That is, by averaging the quality map, we have the gradient 
quality as follows: 

Qlgs =
1

H × W
∑

i,j
S
(
Gmax(i, j),Gmef (i, j)

)
, (7)  

where H and W denote the image height and width, respectively. The 
gradient quality derived above is thus considered as one local quality 
measure score of an MEF image. 

As shown in Fig. 3, the maximum gradient map can effectively reflect 
175 the optimal gradient based on pixel visibility criterion under 
different exposure levels. Therefore, by computing the similarity be
tween the gradient map of the fused image and the maximum gradient 
map of the corresponding multi-exposure image sequence, we can 
effectively capture the pixel degradations caused by various distortions 
existing in the edge positions of the fused image and the unnatural ar
tifacts, which have significant effects on the perceived quality. 

3.3.2. Structure tensor 
Image structure is one of the important features in evaluating image 

quality. In general, image structures should be recovered as much as 
possible for a high-quality MEF image. Thus, how to effectively extract 
the structural features of images is important. However, when evalu
ating the perceptual quality of MEF images, to deal with the high- 

dimensional image sequences composed of multiple images with 
different exposure levels, it is necessary to reconsider how to combine 
the structural information of different reference images. Inspired by the 
structural tensor theory [51] 

we first use Jacobian matrix to represent the local structural features 
of multiple reference images with different exposure levels. Specially, 
the structural information of pixel (i, j) corresponding to image se
quences with different exposure levels can be expressed by: 

J(i, j) =

⎡

⎣
∇xI1(i, j) ∇yI1(i, j)

⋮ ⋮
∇xIM(i, j) ∇yIM(i, j)

⎤

⎦, (8)  

where J(i, j) represents the combination of structural information at 
pixel (i, j) for the multi-exposure image sequence. ∇xI1(i, j) and ∇yI1(i, j)
are the first-order derivatives of pixel (i, j) along the x and y directions, 
respectively. Additionally, M is the number of the multi-exposure 
images. 

After constructing the Jacobian matrix, we use the structure tensor 
operator to aggregate the Jacobian matrix of pixels with different 
exposure levels as follows: 

Z(i, j) = J(i, j)TJ(i, j)

=

⎡

⎢
⎢
⎣

∑M

k=1
(∇xIk(i, j) )2

∑M

k=1
(∇xIk(i, j))(∇yIk(i, j))

∑M

k=1
(∇yIk(i, j))(∇xIk(i, j))

∑M

k=1

(
∇yIk(i, j)

)2

⎤

⎥
⎥
⎦. (9) 

Fig. 2. Diagram of the single-scale LGIR.  
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According to Eqs. (8) and (9), each corresponding pixel in the multi- 
exposure image sequence and the MEF image results in a matrix of 
structure tensor. In order to measure the difference between the struc
ture tensors of the multi-exposure image sequence and the MEF image, 
we first convert the structure tensor matrix Z(i, j) into a vector form 

Z→(i, j). Then, we calculate the cosine distance between the structure 
tensors of the corresponding pixels in multi-exposure image sequence 
Zr
→
(i, j) and the MEF image Zmef

̅̅→
(i, j) as follows: 

Dcos(i, j) =
Zr
→
(i, j)Zmef

̅̅→
(i, j)

‖Zr
→
(i, j)‖‖Zmef

̅̅→
(i, j)‖

. (10) 

Finally, we calculate the average value of the structure tensor dis
tance of all pixels as another local quality measure score: 

Qlst =
1

H × W
∑

i,j
Dcos(i, j). (11)  

3.4. Global reference information 

Although the image gradient magnitude and structure tensor can 
effectively capture image local structures, they cannot characterize the 
global perception of the HVS. Therefore, in order to make our proposed 
quality assessment model more consistent with human visual percep
tion, we additionally propose a global perception measurement. Spe
cifically, the globally perceived quality of the MEF image is measured by 
first synthesizing a global reference image from the multi-exposure 
image sequences with pyramid fusion and then calculate the similarity 

between the global reference image and the to-be-evaluated MEF image. 
In what follows, we illustrate how to construct the global reference 
image by taking human global perception characteristics into 
consideration. 

First, considering that the HVS is very sensitive to the color and 
brightness changes of images, we transform the image from RGB space 
to YUV space, where Y channel represents the brightness and UV 
channels convey the color information. In the process of multi-exposure 
fusion, different exposure levels have great influence on the fused result. 
Moreover, image brightness and saturation also affect the global 
perception of humans. Therefore, we construct weighting maps from 
three aspects, i.e., exposure, contrast, and saturation, to fuse the multi- 
exposure image sequences to obtain the global reference image in the 
YUV space. The exposure, contrast, and saturation are represented by E, 
C and S, respectively. 

3.4.1. Exposure 
In multi-exposure image sequences, underexposed and overexposed 

pixels usually fail to capture the details genuinely, while well-exposed 
pixels can well retain fine details. Therefore, compared to the under
exposed and overexposed pixels, the normally exposed pixels should be 
encouraged to have larger weights in the process of multi-exposure 
image fusion. We use a Gaussian kernel to derive the weights of 
different pixels in terms of their corresponding exposure levels: 

E = exp

(

−
(Y − μ)2

2σ2

)

, (12) 

Fig. 3. (a)-(c) are three images with different exposure levels, (d) is the fused image, (e)- (h) are the gradient maps of (a)-(d), respectively, (i) is the generated 
maximum gradient map from (e)-(h) via Eq. (8). 
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where Y is the normalized value of the Y channel. Two parameters of the 
Gaussian kernel, i.e., standard deviation σ and expected value μ. We 
believe that the brightness of well-exposed pixels tend to be close to 0.5, 
in order to assign a higher weight to the pixels with an exposure of 0.5, μ 
is set to 0.5. At the same time, in order to reduce the weight obtained by 
pixels with too high exposure and too low exposure as much as possible, 
a Gaussian function with a smaller width should be selected. After some 
attempts, we find that setting σ to 0.2 is the most appropriate. 

3.4.2. Contrast 
Generally, the visibility of edges will be reduced in over-/under- 

exposed areas [52]. Thus, to assign larger weights to clear edges in the 
fusion process, we define the contrast measure C by calculating the 
absolute value of the convolution of Laplacian operator L and luminance 
channel Y 

C = |L ⊗ Y|, (13)  

where ⊗ denotes the 2-D convolution operation. 

3.4.3. Saturation 
A well-exposed pixel usually captures color saturation well. In the 

RGB color space, the standard deviation within the R, G and B channel of 
each pixel is taken as the saturation. While in the YUV space, the color 
saturation [53] is defined as follows: 

S = |U| + |V| + 1. (14)  

3.4.4. Weight combination and normalization 
The final weighting maps are obtained by calculating the product of 

the above three measures as follows: 

W(i, j)m = E(i, j)ωE
m × C(i, j)ωC

m × S(i, j)ωS
m , (15)  

where (i, j)m denotes the pixel (i, j) in the m-th image with different 
exposure levels. ωC, ωS and ωE represent the weights of contrast, satu
ration and expo- sure, respectively. The default values of ωC, ωS and ωE 
are all set to 1. In order to ensure that the sum of weights for each pixel 
in reference images with different exposure levels equals to 1, the 
weighting maps are further normalized as follows: 

Ŵ (i, j)m =

[
∑M

M=1
W(i, j)m

]− 1

W(i, j)m, (16) 

where M is the total number of reference images and Ŵ(i, j)m rep
resents thenormalized weighting map of the m-th reference image. 

3.4.5. Pyramid fusion 
The product of multi-exposure image sequences and weighting maps 

are used for pyramid fusion. That is, we first decompose the reference 

images with different exposure levels and weighting maps into Laplacian 
and Gaussian pyramids, respectively. Then, the decomposed images are 
fused to produce the global reference image, as illustrated in Fig. 4. We 
denote the fused global reference image as Igr hereinafter. 

Similar to the local gradient quality, the structural similarity is also 
applied to the global reference image Igr and the to-be-evaluated MEF 
image Imef as follows: 

S
(
Igr, Imef

) 2μIgr
μImef

+ c1

μ2
Igr

+ μ2
Imef

+ c1
∙
2σIgrImef + c2

σ2Igr + σ2Imef + c2
, (17)  

where μIgr
, μImef

, σ2
Igr

, σ2
Imef

, and σIgrImef denote the local mean of Igr and Imef , 
the local variance of Igr and Imef , and the local covariance between Igr 

and Imef , respectively. c1 and c2 are small positive stability constants 
that account for the saturation effects of the HVS at extremely low 
luminance and contrast. As can be seen in Fig. 5, there exist some 
obvious unnatural visual artifacts around the edges of the tower and 
clouds in the to-be-evaluated MEF image shown in (d) and these artifacts 
are well identified by the quality map shown in (f). Finally, the global 
perception quality score of the MEF image is derived by averaging the 
quality map as: 

Qgps =
1

H × W

∑

i,j
S
(
Igr(i, j), Imef(i, j)

)
. (18)  

3.5. Multi-scale feature extraction and quality regression 

Since the recent research has revealed that HVS perceives image in a 
coarse-to-fine strategy [54], a multi-scale strategy is also taken into 
account. In practice, the coarser scale is obtained by low-pass filtering 
and then down sampled by a factor of two. As shown in [55], an 
appropriate scaling factor z is close to the square root of the ratio of the 
focused visual scope and the image size: 

z =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

4∙tan
(

θh
2

)

∙
tan
(

θw

2

)√
√
√
√
√

∙
(
h
d

)2

∙
w
h
, (19)  

where h, w, and d denote image height, image width, and viewing dis
tance, respectively; θh and θw represent horizontal and vertical visual 
angles. As reported in [55], it is found that z = 0.4955(≈ 0.5) works 
well. Thus, the used downsampling factor “2′′ can be viewed as 
approximately optimal in given viewing conditions. To consider varying 
image resolutions and viewing distances, our quality measure scores (i. 
e., Qlgs, Qlst , and Qgps) are estimated in three coarse to fine scales. To be 
specific, the coarser scale is first processed by a low-pass filter, followed 
by a down sampling operation with a factor of 2. Since there are three 
quality measure scores in each scale, thus a total number of nine quality 

Fig. 4. Diagram of the construction of the global reference image via pyramid fusion. I(1)-I(N) are N images with different exposure levels, W (1)-W (N) are the 
corresponding weighting maps, F1-Fn are the corresponding fused results. 
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measure scores are derived for quality regression. 
Specifically, we learn a regression model via SVR for mapping the 

nine quality measure scores into a single quality score. The LIBSVM 
package [56] is used to implement SVR with the radial basis function 
kernel. Once the SVR model is built, it can be used for quality prediction 
of a test MEF image with its corresponding quality measure scores at 
three scales as input. 

4. Experimental results 

4.1. Database and evaluation metrics 

4.1.1. Database 
In our experiments, we evaluate the performance of the proposed 

LGIR 250 model on the database established by Ma et al. [41]. This 
database consists of 17 multi-exposure image sequences with different 
scenes suitable for image quality prediction. e.g., In BelgiumHouse and 
Cave, the brightness of the indoor scene contrasts sharply with the 
outdoor scene. Image brightness of Farmhouse in night scene is no 
satisfactory and Madison has many intricate texture details. Each 
sequence contains at least three images corresponding to under- 
exposure, normal-exposure, and over-exposure. Eight representative 
MEF algorithms are applied to generate a total number of 136 MEF 
images. These MEF algorithms include local energy linear weighting, 
global energy linear weighting, Mertens09 [8], Raman09 [9], Gu12 
[10], Li12 [11], ShutaoLi12 [12], and ShutaoLi13 [13]. In order to 
obtain the subjective quality scores of these MEF images, 25 subjects 
(including 10 males and 15 females) were asked to participate the 
subjective quality assessment experiments where each subject was asked 

to give his/her subjective quality score (ranging from 1 to 10) for each 
observed MEF image. The final subjective score of an MEF image is 
derived in the form of mean opinion score (MOS) which is obtained by 
averaging the corresponding subjective scores from all subjects. 

4.1.2. Evaluation metrics 
To measure the performance of our proposed LGIR model, we use the 

Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank- 
order Correlation Coefficient (SRCC) as the evaluation criteria. Specif
ically, we compute the PLCC and SRCC values between the predicted 
quality scores by LGIR and the MOSs. In theory, larger PLCC and SRCC 
values indicate higher consistency between the predicted objective 
scores and subjective MOSs. In the process of SVR training and testing, 
we adopt the leave-one-out validation (LOOV) strategy, i.e., 128 MEF 
images corresponding to 16 sequences are used as the training set and 8 
MEF images corresponding to remaining one sequence are used for 
testing set at a time. After 17 train-test trails, all the 136 MEF images 
have been tested. 

4.2. Overall performance comparison 

To demonstrate the superiority of our proposed LGIR method, we 
compare it with eight existing objective IQA methods that are widely- 
used for image fusion quality evaluation. These compared IQA 
methods include [41,50,57,58,59,60,61,62]. Among the compared 
methods, [60] is a learning method based on SVR feature fusion, [62] 
uses a learning method of back-propagation to adjust parameters, and 
the rest of the compared methods are not learning based methods. The 
PLCC and SRCC results of these methods are reported in Table 1 and 

Fig. 5. (a), (b), and (c) are the input image sequence with different exposure levels, (d) is the to-be-evaluated MEF image, (e) is the constructed global reference 
image, (f) is the quality map estimated by Eq. (17). 
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Table 2, respectively. 
It can be seen that most competing IQA methods cannot predict the 

perceived quality of MEF images with high accuracy. The reason is that 
the used features by the existing IQA methods are too simple and not 
sufficiently comprehensive to reflect the characteristics of MEF image 
quality. For example, in [61], using entropy and coefficient histogram of 
pixel values as features has poor correlation with subjective perception, 
which may be due to the fact that only using entropy and histogram of 
pixel intensity cannot accurately predict the perceptual changes of the 
fused image content. Moreover, based on structural similarity, gradient, 
structure and other information, [57], [58] and [41] show relatively 
good results for MEF image quality prediction, but these evaluation 
models which only consider the information such as image texture/ 
structure have poor perception of image brightness and color change. 
Overall, the performance results still have much room for further 
improvement. By contrast, we observe that the PLCC and SRCC valus of 
our proposed LGIR reach to 0.9252 and 0.8758, respectively, indicating 
a high consistency with subjective quality ratings and the best 
performance 

among all the competitors when considering the average perfor
mance over all sequences. When considering each image sequence set, 
the proposed LGIR method delivers he best performance on 11 out of 17 

sequences in terms of PLCC while Ma et al. [41] ranks the second place, 
which achieves the best performance on only 4 out of 17 sequences in 
terms of PLCC. The is mainly attributed to that we jointly take both the 
local and global image perception characteristics into account for 
feature representation towards a more comprehensive and accurate 
quality evaluation. We further draw the scatter plots between the pre
dicted quality scores and the subjective MOSs in Fig. 6. It also suggests 
that the proposed LGIR method can predict the quality of MEF images in 
a highly consistent manner with subjective perception. 

4.3. Validity of each individua 

Our proposed LGIR method evaluates the quality of MEF images from 
both local and global aspects. Specifically, three different types of 
quality measures are estimated at three scales for quality regression. In 
order to understand the contribution of each individual type of quality 
measurement in our proposed LGIR, we further conduct ablation studies. 
The ablation study results are shown in Table 3 and Table 4. We can find 
that the PLCC and SRCC values of the single index for the maximum 
gradient feature Qlgs can reach 0.8730 and 0.7503, respectively, which 
are quite competitive. This is because the edge information, as an 
important image feature, will make the observer very sensitive to the 

Table 1 
PLCC results of different MEF IQA algorithms.  

Source sequence sequence sequence [57] [58] [50] [59] [41] [60] [61] [62] LGIR 

Balloons  0.7050  0.4389  0.5038  0.2765  0.9297  0.9493  0.7605  0.6648  0.8358 
Belgium house  0.8017  0.6261  0.5020  − 0.5719  0.9312  0.9897  0.1744  0.5608  0.9931 
Lampl  0.7294  0.7281  0.4320  0.0095  0.8907  0.8091  − 0.4785  0.4017  0.9218 
Candle  0.9388  0.8917  0.1789  − 0.8006  0.9513  0.8547  − 0.7290  0.1063  0.8643 
Cave  0.6946  0.8136  0.6301  0.1562  0.7719  0.5511  0.0526  0.6206  0.9421 
Chinese garden  0.7684  0.8358  0.4087  0.3800  0.9563  0.4697  − 0.2942  0.4812  0.9683 
Farmhouse  0.6408  0.5997  0.2163  − 0.2729  0.8632  0.7652  0.5039  0.6929  0.8759 
House  0.6207  0.5956  0.4805  0.4154  0.8414  0.9656  − 0.5237  0.4762  0.9601 
Kluki  0.3914  0.3585  − 0.0489  0.5952  0.8242  − 0.1624  0.0209  − 0.1124  0.7305 
Lamp2  0.8445  0.7518  0.5955  0.6131  0.8291  0.7938  0.6205  0.6493  0.9748 
Landscape  0.3204  0.4479  0.0306  0.9015  0.7457  0.6156  0.5393  0.0806  0.8838 
Lighthouse  0.8383  0.6553  − 0.0226  0.6680  0.9420  0.8173  − 0.2613  0.2462  0.9879 
Madison capitol  0.6278  0.4225  0.6184  0.4900  0.9141  0.7006  0.0313  0.5414  0.9433 
Memorial  0.8276  0.6780  0.7332  − 0.2164  0.8981  0.8300  0.4454  0.5877  0.9680 
Office  0.4980  0.4725  0.3238  0.5309  0.9628  0.5742  0.3022  0.3161  0.9553 
Tower  0.7719  0.8347  0.5941  0.6806  0.9561  0.7839  − 0.1155  0.5718  0.9580 
Venice  0.7949  0.6543  0.2796  0.6790  0.9699  0.6075  − 0.0222  0.4786  0.9668  

Average  0.6950  0.6356  0.3798  0.2667  0.8928  0.7009  0.0604  0.4332  0.9252  

Table 2 
SRCC results of different MEF IQA algorithms.  

Source sequence [57] [58] [50] [59] [41] [60] [61] [62] LGIR 

Balloons  0.6667  0.5000  0.4524  0.3333  0.8333  0.9286  0.7143  0.5952  0.8095 
Belgium house  0.7785  0.7545  0.4671  − 0.7066  0.9701  0.9222  0.0000  0.5389  0.9701 
Lampl  0.7857  0.6190  0.4048  0.1905  0.9762  0.8095  − 0.3810  0.4762  0.9048 
Candle  0.9762  0.7857  0.5476  − 0.4524  0.9286  0.7615  − 0.6667  0.1667  0.9762 
Cave  0.7143  0.8095  0.5714  0.3333  0.8333  0.6190  0.0238  0.6429  0.8623 
Chinese garden  0.6905  0.7857  0.5238  0.4048  0.9286  0.5714  − 0.2857  0.5476  0.7857 
Farmhouse  0.7381  0.8095  0.2857  − 0.1905  0.9286  0.5714  0.5000  0.5000  0.9341 
House  0.5952  0.4524  0.4048  0.4524  0.8571  0.9762  − 0.6905  0.5238  0.8333 
Kluki  0.2619  0.2857  0.1190  0.7381  0.7857  − 0.1667  0.1667  0.0476  0.8810 
Lamp2  0.7619  0.6190  0.5476  0.8810  0.7143  0.7381  0.8333  0.6905  0.9524 
Landscape  0.0238  0.4048  0.1429  0.8333  0.5238  0.5000  0.5476  0.1429  0.7619 
Lighthouse  0.5000  0.4286  0.0714  0.6905  0.8810  0.7857  − 0.4286  0.3810  0.9222 
Madison capitol  0.5238  0.3571  0.4762  0.5476  0.8810  0.6429  − 0.3095  0.5238  0.8095 
Memorial  0.7619  0.5476  0.6667  − 0.2381  0.8571  0.8810  0.8095  0.5238  0.9102 
Office  0.2771  0.3976  0.4579  0.4940  0.7832  0.1687  0.0843  0.3856  0.8555 
Tower  0.5714  0.5238  0.5714  0.5952  0.9524  0.7381  − 0.2143  0.5952  0.8571 
Venice  0.9102  0.7306  0.3114  0.6587  0.9341  0.5868  0.2994  0.5629  0.8623  

Average  0.6198  0.5771  0.4131  0.3274  0.8570  0.6491  0.0590  0.4614  0.8597  
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subtle changes of the local edge feature of an image. Therefore, the 
proposed maximum gradient in the gradient domain can obtain the most 
obvious edge information in all different exposure images, which 
effectively reflects the edge quality of fused images. In addition, our 
global perceptual quality measure Qgps and its combination variations 
have also achieved competitive PLCC and SRCC values since the 
generated global reference image is highly consistent with the human 
overall perception of high-quality images. The global perceptual quality 
measure Qgps can not only reflect the details such as structure and texture 
locally, but also represent the overall characteristics such as contrast and 
brightness of images globally. Third, although the structure tensor dis
tance measure Qlst delivers moderate performance in an average level, it 
achieves the highest PLCC and SRCC values on some image sequences 
such as “Farmhouse” and “Kluki”. It suggests that the structure tensor 
distance measure Qlst is complementary to Qlgs and Qgps. Finally, by 
jointly considering these three complementary quality measurements at 
multiple scales, the best performance can be achieved, which well 
demonstrate the effectiveness of each quality measure component in the 
proposed LGIR method. In the future, the research on MEF FR-IQA 
model could focus on evaluating the preservation degree of the fused 
image by considering more comprehensive information so as to develop 

a more accurate FR-IQA model for MEF images. 

4.4. Application to parameter tuning of MEF algorithms 

Besides automatic quality evaluation, an effective objective MEF 
image quality evaluation metric should be able to guide the optimization 
of MEF algorithms. In this section, we demonstrate this idea by applying 
the proposed LGIR metric to automatic parameter tuning of MEF algo
rithms. There are always one or several parameters in MEF algorithms 
whose optimal values vary with different image contents. It is chal
lenging and time-consuming to handpick a set of parameters that work 
well for all scenes. Our proposed MEF image quality evaluation metric is 
able to replace the role of humans in this task, especially when the 
volume of images to be processed is large. Here, we use the MEF algo
rithm proposed in [12] as an example, which involves two tunable pa
rameters σs and σr. The visual quality of the final fused image is highly 
sensitive to these two parameters. The default values settled in [12] are: 
σs = 100 and σr = 4. 

Fig. 7 shows the fused images generated with different σs and σr 
values with a step of 1 and 0.1, respectively. By varying σs and σr, we can 
obtain MEF images with significantly different quality. In the figure, 
warmer color indicates higher quality score. The corresponding pre
dicted quality scores by our proposed LGIR method are also shown 
under each image. It can be seen that the MEF result obtained by default 
parameter values (i.e., σs = 100 andσr = 4) delivers worse visual quality 
than that obtained by the optimal parameters chosen by our proposed 
MEF quality evaluation model, i.e., LGIR. Specifically, the upper-right 
image (chosen by our proposed MEF image quality evaluation model, 
i.e., σr = 95 and σr = 3.2) preserves much more finer details and ex
hibits more natural color appearance than the upper-left image (ob
tained by the default parameter values with σr = 100 and σr = 4). In 
addition, our proposed LGIR method can also successfully identify the 
fused results with low visual quality, as indicated by the lower-left and 
lower-right two examples. All these examples can well demonstrate the 
effectiveness of LGIR for flexible parameter tuning of MEF algorithms. 

5. Conclusion 

In this paper, inspired by the global-to-local perception mechanism 
of the HVS, we propose a novel FR-IQA method called LGIR for MEF 
images by synthesizing both local and global intermediate references 
from the input multiple reference images. More specifically, the inter
mediate references are synthesized in gradient domain, structural tensor 

Fig. 6. Scatter plot between predicted quality scores and subjective MOSs.  

Table 3 
PLCC results of each individual quality measure and its combination variations.  

Qlgs ✓   ✓ ✓  ✓ 
Qlst  ✓  ✓  ✓ ✓ 
Qgps   ✓  ✓ ✓ ✓ 

Balloons 0.8260 0.8116 0.8947 0.8150 0.8599 0.8147 0.8358 
Belgium house 0.9517 0.8381 0.9759 0.9608 0.9820 0.9776 0.9931 
Lampl 0.8318 0.8590 0.8578 0.8674 0.8767 0.8639 0.9218 
Candle 0.9390 0.8355 0.9770 0.9519 0.9731 0.9590 0.8643 
Cave 0.9077 0.3578 0.9293 0.9144 0.9391 0.9293 0.9421 
Chinese garden 0.8809 0.6531 0.9596 0.8891 0.9556 0.9596 0.9683 
Farmhouse 0.8159 0.9787 0.8616 0.8218 0.8729 0.8617 0.8759 
House 0.8947 0.7171 0.9553 0.8993 0.9505 0.9556 0.9601 
Kluki 0.5157 0.8402 0.7446 0.7947 0.7233 0.7418 0.7305 
Lamp2 0.9279 0.7933 0.8432 0.9127 0.9432 0.8436 0.9748 
Landscape 0.8997 0.8110 0.7210 0.9335 0.9525 0.7208 0.8838 
Lighthouse 0.9753 0.9417 0.9500 0.9729 0.9812 0.9470 0.9879 
Madison capitol 0.8378 0.7791 0.9368 0.9241 0.9509 0.9364 0.9433 
Memorial 0.9567 0.9579 0.9689 0.9659 0.9642 0.9700 0.9680 
Office 0.8689 0.8507 0.8904 0.9429 0.8913 0.8902 0.9553 
Tower 0.9148 0.8701 0.9370 0.9190 0.9428 0.9480 0.9580 
Venice 0.8976 0.8925 0.8764 0.8842 0.8793 0.8765 0.9668  

Average 0.8730 0.8110 0.8987 0.9048 0.9199 0.8938 0.9252  
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domain, and global perception domain, respectively. In each domain, a 
single quality measure is derived to reflect the visual quality of the fused 
image from a specific perspective. In addition, we estimate those quality 
measures at multiple scales, and fuse all the quality measures together to 
predict the final quality score via SVR. Experimental results confirm the 
superiority of the proposed LGIR over some existing relevant algorithms. 
Besides, we also demonstrate that LGIR is a useful tool to exploit the 
parameter space and to pick the optimal parameter set that produces 
MEF image with the best visual quality. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This work was supported in part by the Zhejiang Natural Science 

Foundation under Grant LR22F020002; in part by the Natural Science 
Foundation of China under Grant 61901236; in part by the Natural 
Science Foundation of Ningbo under Grant 202003N4155, and in part 
by the Fundamental Research Funds for the Provincial Universities of 
Zhejiang under Grant SJLZ2020003. 

References 

[1] E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, High Dynamic Range Imaging: 
Acquisition, in: High Dynamic Range Imaging, Elsevier, 2006, pp. 367–462, 
https://doi.org/10.1016/B978-012585263-0/50010-5. 

[2] R. Yonesaka, Y. Lee, P. Xia, T. Tahara, Y. Awatsuji, K. Nishio, O. Matoba, High 
dynamic range digital holography and its demonstration by off-axis configuration, 
IEEE Trans. Ind. Inf. 12 (5) (2016) 1658–1663. 

[3] G. Yue, W. Yan, T. Zhou, Referenceless quality evaluation of tone-mapped hdr and 
multiexposure fused images, IEEE Trans. Ind. Inf. 16 (3) (2020) 1764–1775, 
https://doi.org/10.1109/TII.2019.2927527. 

[4] Z. Li, J. Zheng, Visual-salience-based tone mapping for high dynamic range images, 
IEEE Trans. Ind. Electron. 61 (12) (2014) 7076–7082, https://doi.org/10.1109/ 
TIE.2014.2314066. 

Table 4 
SRCC results of each individual quality measure and its combination variations.  

Qlgs ✓   ✓ ✓  ✓ 
Qlst  ✓  ✓  ✓ ✓ 
Qgps   ✓  ✓ ✓ ✓ 

Balloons 0.6667 0.6249 0.6667 0.6905 0.7857 0.6667 0.8095 
Belgium house 0.8503 0.6467 0.9222 0.9222 0.9461 0.9461 0.9701 
Lampl 0.8571 0.7619 0.8571 0.8810 0.8810 0.8571 0.9048 
Candle 0.9524 0.7143 0.9286 0.9524 0.9524 0.8810 0.9762 
Cave 0.7143 0.3429 0.7619 0.7143 0.7619 0.7619 0.8333 
Chinese garden 0.8095 0.2143 0.7143 0.8095 0.7857 0.7143 0.7857 
Farmhouse 0.8571 0.5476 0.8333 0.8571 0.9286 0.8333 0.9286 
House 0.6667 0.6190 0.8571 0.7381 0.8333 0.8571 0.8333 
Kluki 0.5000 0.4048 0.7143 0.6190 0.6429 0.7143 0.7381 
Lamp2 0.8095 0.4286 0.6905 0.7619 0.7619 0.6905 0.9524 
Landscape 0.5714 0.7143 0.6667 0.5952 0.8095 0.6667 0.7619 
Lighthouse 0.8095 0.9286 0.8571 0.8095 0.8095 0.8571 0.8810 
Madison capitol 0.7619 0.4048 0.8333 0.8095 0.8810 0.8333 0.8095 
Memorial 0.8095 0.6667 0.8333 0.7857 0.7619 0.8333 0.8571 
Office 0.6988 0.6386 0.6747 0.7711 0.7350 0.6747 0.8555 
Tower 0.7143 0.5238 0.8571 0.8095 0.9048 0.8571 0.8571 
Venice 0.7066 0.4671 0.8024 0.7545 0.7066 0.8024 0.8623  

Average 0.7503 0.5675 0.7923 0.7812 0.8169 0.7909 0.8597  

Fig. 7. Predicted quality scores of the fused images generated with different σs and σr values in [12].  

J. Xu et al.                                                                                                                                                                                                                                       

https://doi.org/10.1016/B978-012585263-0/50010-5
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0010
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0010
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0010
https://doi.org/10.1109/TII.2019.2927527
https://doi.org/10.1109/TIE.2014.2314066
https://doi.org/10.1109/TIE.2014.2314066


Displays 74 (2022) 102188

11

[5] I.R. Khan, S. Rahardja, M.M. Khan, M.M. Movania, F. Abed, A tone-mapping 
technique based on histogram using a sensitivity model of the human visual 
system, IEEE Trans. Ind. Electron. 65 (4) (2018) 3469–3479. 

[6] K. Gu, S. Wang, G. Zhai, S. Ma, X. Yang, W. Lin, W. Zhang, W. Gao, Blind quality 
assessment of tone-mapped images via analysis of information, naturalness, and 
structure, IEEE Trans. Multimedia 18 (3) (2016) 432–443, https://doi.org/ 
10.1109/TMM.2016.2518868. 

[7] P.J. Burt, The pyramid as a structure for efficient computation, in: Multi-resolution 
image processing and analysis, Springer, 1984, pp. 6–35. 

[8] T. Mertens, J. Kautz, F. Van Reeth, Exposure fusion: A simple and practical 
alternative to high dynamic range photography, in: Computer Graphics Forum, vol. 
28, 2009, pp. 161–171. 

[9] S. Raman, S. Chaudhuri, Bilateral filter based compositing for variable exposure 
photography, Proc. Eurographics (2009). 

[10] B.o. Gu, W. Li, J. Wong, M. Zhu, M. Wang, Gradient field multi-exposure images 
fusion for high dynamic range image visualization, J. Vis. Commun. Image 
Represent. 23 (4) (2012) 604–610. 

[11] Z.G. Li, J.H. Zheng, S. Rahardja, Detail-enhanced exposure fusion, IEEE Trans. 
Image Process. 21 (11) (2012) 4672–4676, https://doi.org/10.1109/ 
TIP.2012.2207396. 

[12] S. Li, X. Kang, Fast multi-exposure image fusion with median filter and recursive 
filter, IEEE Trans. Consum. Electron. 58 (2) (2012) 626–632, https://doi.org/ 
10.1109/TCE.2012.6227469. 

[13] S. Li, X. Kang, J. Hu, Image fusion with guided filtering, IEEE Trans. Image Process. 
22 (7) (2013) 2864–2875. 

[14] X. Zhang, Benchmarking and comparing multi-exposure image fusion algorithms, 
Information Fusion. 

[15] Z. Wang, Applications of objective image quality assessment methods, IEEE Signal 
Process Mag. 28 (6) (2011) 137–142. 

[16] G. Zhai, X. Wu, X. Yang, W. Lin, W. Zhang, A psychovisual quality metric in free- 
energy principle, IEEE Trans. Image Process. 21 (1) (2012) 41–52, https://doi.org/ 
10.1109/TIP.2011.2161092. 

[17] K. Gu, S. Wang, H. Yang, W. Lin, G. Zhai, X. Yang, W. Zhang, Saliency guided 
quality assessment of screen content images, IEEE Trans. Multimedia 18 (6) (2016) 
1098–1110, https://doi.org/10.1109/TMM.2016.2547343. 

[18] X. Min, G. Zhai, K.e. Gu, X. Yang, X. Guan, Objective quality evaluation of dehazed 
images, IEEE Trans. Intell. Transp. Syst. 20 (8) (2019) 2879–2892, https://doi.org/ 
10.1109/TITS.2018.2868771. 

[19] T. Li, X. Min, H. Zhao, G. Zhai, Y. Xu, W. Zhang, Subjective and objective quality 
assessment of compressed screen content videos, IEEE Trans. Broadcast. 67 (2) 
(2021) 438–449, https://doi.org/10.1109/TBC.2020.3028335. 

[20] X. Min, K. Ma, K.e. Gu, G. Zhai, Z. Wang, W. Lin, Unified blind quality assessment 
of compressed natural, graphic, and screen content images, IEEE Trans. Image 
Process. 26 (11) (2017) 5462–5474. 

[21] H. Duan, G. Zhai, X. Min, Y. Zhu, Y. Fang, X. Yang, Perceptual quality assessment of 
omnidirectional images, in: 2018 IEEE international symposium on circuits and 
systems (ISCAS), IEEE, 2018, pp. 1–5. 

[22] G. Zhai, W. Sun, X. Min, J. Zhou, Perceptual quality assessment of low-light image 
enhancement, ACM Transactions on Multimedia Computing, Communications, and 
Applications (TOMM) 17 (4) (2021) 1–24. 

[23] Z. Peng, Q. Jiang, F. Shao, W. Gao, W. Lin, Lggd+: Image retargeting quality 
assessment by measuring local and global geometric distortions, IEEE Trans. 
Circuits Syst. Video Technol., doi: 10.1109/TCSVT.2021.3112933. 

[24] Q. Jiang, Z. Peng, F. Shao, K. Gu, Y. Zhang, W. Zhang, W. Lin, Stereoars: Quality 
evaluation for stereoscopic image retargeting with binocular inconsistency 
detection, IEEE Trans. Broadcast., doi:10.1109/TBC. 460 2021.3113280. 

[25] Q. Jiang, W. Zhou, X. Chai, G. Yue, F. Shao, Z. Chen, A full-reference stereoscopic 
image quality measurement via hierarchical deep feature de-gradation fusion, IEEE 
Trans. Instrum. Meas. 69 (12) (2020) 9784–9796, https://doi.org/10.1109/ 
TIM.2020.3005111. 

[26] M. Liu, K. Gu, G. Zhai, P. Le Callet, W. Zhang, Perceptual reduced reference visual 
quality assessment for contrast alteration, IEEE Trans. Broadcasting 63 (1) (2017) 
71–81, https://doi.org/10.1109/TBC. 2016. 2597545. 

[27] Y. Liu, G. Zhai, K. Gu, X. Liu, D. Zhao, W. Gao, Reduced-reference image quality 
assessment in free-energy principle and sparse representation, IEEE Trans. 
Multimedia 20 (2) (2018) 379–391, https://doi.org/10.1109/TMM. 
2017.2729020. 

[28] G. Zhai, Y. Zhu, X. Min, Comparative perceptual assessment of visual signals using 
free energy features, IEEE Trans. Multimedia 23 (2021) 3700–3713. 

[29] X. Sun, G. Min, K. Zhai, H. Gu, S. Duan, Ma, Mc360iqa: A multi-channel cnn for 
blind 360-degree image quality assessment, IEEE J. Sel. Top. Signal Process. 14 (1) 
(2019) 64–77. 

[30] Z. Zhang, W. Sun, X. Min, W. Zhu, T. Wang, W. Lu, G. Zhai, A no-reference 
evaluation metric for low-light image enhancement, in: 2021 IEEE Interna- tional 
Conference on Multimedia and Expo (ICME), IEEE, 2021, pp. 1–6. 

[31] M. ur Rehman, I.F. Nizami, M. Majid, Deeprpn-biqa: Deep architectures with 
region proposal network for natural-scene and screen-content blind image quality 
assessment, Displays 71 (2022) 102101. 

[32] Y. Huang, H. Xu, Z. Ye, Ye, Image quality evaluation for oled-based smart-phone 
displays at various lighting conditions, Displays 70 (2021) 102115, https://doi. 
org/10.1016/j.displa.2021.102115. 

[33] R. Hu, Y. Liu, Z. Wang, X. Li, Blind quality assessment of night-time image, 
Displays 69 (2021) 102045, https://doi.org/10.1016/j.displa.2021.102045. 

[34] L. Xu, J. Li, W. Lin, Y. Zhang, Y. Zhang, Y. Yan, Pairwise comparison and rank 
learning for image quality assessment, Displays 44 (2016) 21–26, https://doi.org/ 
10.1016/j.displa.2016.06.002. 

[35] T. Li, X. Min, W. Zhu, Y. Xu, W. Zhang, No-reference screen content video quality 
assessment, Displays 69 (2021) 102030, https://doi.org/10.1016/j. 
displa.2021.102030. 

[36] K. Gu, X. Xu, J. Qiao, Q. Jiang, W. Lin, D. Thalmann, Learning a unified blind 
image quality metric via on-line and off-line big training instances, IEEE Trans. Big 
Data 6 (4) (2020) 780–791. 

[37] Q. Jiang, Z. Peng, G. Yue, H. Li, F. Shao, No-reference image contrast evaluation by 
generating bidirectional pseudoreferences, IEEE Trans. Ind. Inf. 17 (9) (2021) 
6062–6072. 

[38] Q. Jiang, F. Shao, W. Lin, G. Jiang, Blique-tmi: Blind quality evaluator for tone- 
mapped images based on local and global feature analyses, IEEE Trans. Circuits 
Syst. Video Technol. 29 (2) (2019) 323–335, https://doi.org/10.1109/ 
TCSVT.2017.2783938. 

[39] X. Wang, Q. Jiang, F. Shao, K.e. Gu, G. Zhai, X. Yang, Exploiting local degradation 
characteristics and global statistical properties for blind quality assessment of tone- 
mapped hdr images, IEEE Trans. Multimedia 23 (2021) 692–705, https://doi.org/ 
10.1109/TMM.2020.2986583. 

[40] S. Athar, Z. Wang, A comprehensive performance evaluation of image quality 
assessment algorithms, IEEE Access 7 (2019) 140030–140070. 

[41] K. Ma, K. Zeng, Z. Wang, Perceptual quality assessment for multi-exposure image 
fusion, IEEE Trans. Image Process. 24 (11) (2015) 3345–3356. 

[42] P. J. Burt, R. J. Kolczynski, Enhanced image capture through fusion, in: 1993 (4th) 
international Conference on Computer Vision, IEEE, 1993, pp. 173–182. 

[43] Q. Wang, W. Chen, X. Wu, Z. Li, Detail-enhanced multi-scale exposure fusion in yuv 
color space, IEEE Trans. Circuits Syst. Video Technol. 30 (8) (2020) 2418–2429, 
https://doi.org/10.1109/TCSVT.2019. 2919310. 

[44] A.A. Goshtasby, Fusion of multi-exposure images, Image Vis. Comput. 23 (6) 
(2005) 611–618. 

[45] W. Zhang, W.K. Cham, Gradient-directed multiexposure composition, IEEE Trans. 
Image Process. 21 (4) (2012) 2318–2323. 

[46] K. Ma, H. Li, H. Yong, Z. Wang, D. Meng, L. Zhang, Robust multi-exposure image 
fusion: a structural patch decomposition approach, IEEE Trans. Image Process. 26 
(5) (2017) 2519–2532. 

[47] H. Duan, G. Zhai, X. Yang, D. Li, W. Zhu, Ivqad 2017: An immersive video quality 
assessment database, in: 2017 International Conference on Systems, Signals and 
Image Processing (IWSSIP), IEEE, 2017, pp. 1–5. 

[48] G. Qu, D. Zhang, P. Yan, Information measure for performance of image fusion, 
Electron. Lett. 38 (7) (2002) 313–315. 

[49] C. S. Xydeas, V. S. Petrovic, Objective pixel-level image fusion performance 
measure, in: Sensor Fusion: Architectures, Algorithms, and Applications IV, vol. 
4051, SPIE, 2000, pp. 89–98. 

[50] G. Piella, H. Heijmans, A new quality metric for image fusion, in: International 
Conference on Image Processing, 2003. 

[51] S. Di Zenzo, A note on the gradient of a multi-image, Computer vision, graphics, 
and image processing 33 (1) (1986) 116–125. 

[52] D. Marr, E. Hildreth, Theory of edge detection, Proc. R. Soc. Lond. B Biol. Sci. 207 
(1167) (1980) 187–217. 

[53] J.K.T. Mertens, F.V. Reeth, Exposure fusion, in: 15th Pacific Conference on 
Computer Graphics and Applications, IEEE, 2007, pp. 382–390. 

[54] H. Hughes, G. Nozawa, F. Kitterle, Global precedence, spatial frequency channels, 
and the statistics of natural images, J. Cognitive Neuro-science 8 (3) (1996) 
197–230. 

[55] K.e. Gu, M. Liu, G. Zhai, X. Yang, W. Zhang, Quality assessment considering 
viewing distance and image resolution, IEEE Trans. Broadcast. 61 (3) (2015) 
520–531. 

[56] C.-C. Chang, C.-J. Lin, LIBSVM: A library for support vector machines, ACM Trans. 
Intell. Syst. Technol. 2 (3) (2011) 1–27. 

[57] C. Xydeas, V. Petrovic, Objective image fusion performance measure, Elec-tronics 
Letters 36 (4) (2000) 308–309. 

[58] P.-W. Wang, B. Liu, A novel image fusion metric based on multi-scale analysis, in: 
International Conference on Signal Processing, 2008, pp. 965–968. 

[59] Y. Chen, R.S. Blum, A new automated quality assessment algorithm for image 
fusion, Image Vis. Comput. 27 (10) (2009) 1421–1432. 

[60] D. Kundu, D. Ghadiyaram, A.C. Bovik, B.L. Evans, No-reference quality assessment 
of tone-mapped HDR pictures, IEEE Trans. Image Process. 26 (6) (2017) 
2957–2971. 

[61] N. Cvejic, C. Canagarajah, D. Bull, Image fusion metric based on mutual 
information and tsallis entropy, Electron. Lett. 42 (11) (2006) 626–627. 

[62] Y. Zheng, E.A. Essock, B.C. Hansen, A.M. Haun, A new metric based on extended 
spatial frequency and its application to DWT based fusion algorithms, Information 
Fusion 8 (2) (2007) 177–192. 

J. Xu et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0141-9382(22)00033-6/h0025
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0025
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0025
https://doi.org/10.1109/TMM.2016.2518868
https://doi.org/10.1109/TMM.2016.2518868
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0045
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0045
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0050
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0050
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0050
https://doi.org/10.1109/TIP.2012.2207396
https://doi.org/10.1109/TIP.2012.2207396
https://doi.org/10.1109/TCE.2012.6227469
https://doi.org/10.1109/TCE.2012.6227469
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0065
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0065
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0075
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0075
https://doi.org/10.1109/TIP.2011.2161092
https://doi.org/10.1109/TIP.2011.2161092
https://doi.org/10.1109/TMM.2016.2547343
https://doi.org/10.1109/TITS.2018.2868771
https://doi.org/10.1109/TITS.2018.2868771
https://doi.org/10.1109/TBC.2020.3028335
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0100
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0100
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0100
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0110
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0110
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0110
https://doi.org/10.1109/TIM.2020.3005111
https://doi.org/10.1109/TIM.2020.3005111
https://doi.org/10.1109/TBC. 2016. 2597545
https://doi.org/10.1109/TMM. 2017.2729020
https://doi.org/10.1109/TMM. 2017.2729020
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0140
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0140
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0145
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0145
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0145
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0155
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0155
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0155
https://doi.org/10.1016/j.displa.2021.102115
https://doi.org/10.1016/j.displa.2021.102115
https://doi.org/10.1016/j.displa.2021.102045
https://doi.org/10.1016/j.displa.2016.06.002
https://doi.org/10.1016/j.displa.2016.06.002
https://doi.org/10.1016/j.displa.2021.102030
https://doi.org/10.1016/j.displa.2021.102030
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0180
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0180
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0180
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0185
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0185
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0185
https://doi.org/10.1109/TCSVT.2017.2783938
https://doi.org/10.1109/TCSVT.2017.2783938
https://doi.org/10.1109/TMM.2020.2986583
https://doi.org/10.1109/TMM.2020.2986583
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0200
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0200
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0205
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0205
https://doi.org/10.1109/TCSVT.2019. 2919310
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0220
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0220
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0225
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0225
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0230
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0230
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0230
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0240
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0240
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0260
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0260
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0270
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0270
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0270
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0275
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0275
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0275
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0280
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0280
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0285
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0285
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0295
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0295
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0300
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0300
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0300
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0305
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0305
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0310
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0310
http://refhub.elsevier.com/S0141-9382(22)00033-6/h0310

	Quality assessment of multi-exposure image fusion by synthesizing local and global intermediate references
	1 Introduction
	2 Related work
	2.1 Multi-exposure image fusion algorithm
	2.2 Fusion image quality evaluation algorithm

	3 Proposed method
	3.1 Problem formulation
	3.2 Overview
	3.3 Local reference information
	3.3.1 Maximum gradient
	3.3.2 Structure tensor

	3.4 Global reference information
	3.4.1 Exposure
	3.4.2 Contrast
	3.4.3 Saturation
	3.4.4 Weight combination and normalization
	3.4.5 Pyramid fusion

	3.5 Multi-scale feature extraction and quality regression

	4 Experimental results
	4.1 Database and evaluation metrics
	4.1.1 Database
	4.1.2 Evaluation metrics

	4.2 Overall performance comparison
	4.3 Validity of each individua
	4.4 Application to parameter tuning of MEF algorithms

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References


