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ABSTRACT
In no-reference 360-degree image quality assessment (NR 360IQA),
graph convolutional networks (GCNs), which model interactions
between viewports through graphs, have achieved impressive per-
formance. However, prevailing GCN-based NR 360IQA methods
suffer from three main limitations. First, they only use high-level
features of the distorted image to regress the quality score, while
the human visual system scores the image based on hierarchical
features. Second, they simplify complex high-order interactions
between viewports in a pairwise fashion through graphs. Third, in
the graph construction, they only consider the spatial location of
the viewport, ignoring its content characteristics. Accordingly, to
address these issues, we propose an adaptive hypergraph convolu-
tional network for NR 360IQA, denoted as AHGCN. Specifically, we
first design a multi-level viewport descriptor for extracting hierar-
chical representations from viewports. Then, we model interactions
between viewports through hypergraphs, where each hyperedge
connects two or more viewports. In the hypergraph construction,
we build a location-based hyperedge and a content-based hyper-
edge for each viewport. Experimental results on two public 360IQA
databases demonstrate that our proposed approach has a clear ad-
vantage over state-of-the-art full-reference and no-reference IQA
models.
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1 INTRODUCTION
360-degree images/videos have become increasingly popular with
the boost of virtual reality (VR) technology [7]. Compared to 2D
images/videos, 360-degree ones allow users to interactively ma-
nipulate the perspective through head-mounted displays (HMDs),
thereby bringing users an immersive experience. In real-world VR
broadcasting systems, 360-degree images/videos typically undergo
three stages, i.e., acquisition, compression, and transmission, before
reaching end users. Among these stages, 360-degree images/videos
may be degraded by various distortions such as white noise, blur-
ring, and compression artifacts [9, 25]. The quality degradation of
360-degree content may significantly impair the user’s quality of
experience [40]. Therefore, it is important to study 360-degree im-
age quality assessment (360IQA), which can guide the optimization
of VR broadcasting systems.

Compared to 2D image quality assessment (2DIQA), 360IQA en-
countersmore challenges. First, 360IQAneeds to consider geometric
deformation and pixel redundancy, as they are often introduced
when storing 360-degree content. Second, 360IQA needs to consider
the gap between the viewport image seen in the HMD and its cor-
responding 360-degree image in the equirectangular format. Third,
360IQA needs to consider interactions between viewports. Specif-
ically, since users only watch a small portion of the 360-degree
image at a time, they need to browse multiple viewports for accu-
rate quality assessment. During this viewing process, the visual
information of different viewports is interacted [32].

In general, 360IQA can be divided into two categories: full-
reference (FR) 360IQA and no-reference (NR) 360IQA. FR 360IQA
assesses the distorted 360-degree image by comparing it with the
original 360-degree image. Due to the geometric deformation and
pixel redundancy, it is inappropriate for FR 360IQA to directly
use FR 2DIQA metrics such as PSNR and SSIM [30]. Accordingly,
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Figure 1: Comparison of graphs and hypergraphs in mod-
eling interactions between viewports. (a) The distorted 360-
degree image and 8 key viewports. (b) The constructed graph
based on spatial locations of viewports. (c) Two hyperedges
constructed for the node 1. e1 and e2 contain spatial and se-
mantic neighborhoods of the node 1, respectively. k denotes
the number of semantic neighborhoods.

researchers design various variants of FR 2DIQA metrics, e.g., WS-
PSNR [28] and WS-SSIM [43]. NR 360IQA first trains a 360IQA
model using distorted 360-degree imageswith labeled quality scores,
and then uses it to assess the unseen distorted 360-degree image
without the original 360-degree image. Since the original 360-degree
image is typically unavailable in many real-world applications, we
focus on NR 360IQA instead of FR 360IQA. Early NR 360IQA meth-
ods use patches cropped from the distorted 360-degree image to
predict the quality score. As patches are not the actual content
viewed by users, viewport-oriented methods are thus developed.
Recently, the viewport-based graph convolutional neural network
(VGCN [32]) considers interactions between viewports and mod-
els them through graphs, achieving remarkable performance. As
shown in Figure 1 (b), VGCN defines the graph structure based
on spatial locations of viewports, and uses high-level features of
viewports as node features.

However, there are three main limitations in existing GCN-based
NR 360IQAmethods. First, only high-level features of viewports are
used for quality evaluation, which is inconsistent with the human
visual perception process. Specifically, it is known that the human
brain hierarchically processes the perceived image and the human
visual system comprehends the image based on the obtained hierar-
chical features [29]. As intrinsically related to image understanding,
quality evaluation also relies on hierarchical features. Second, since
each edge only connects two viewports, graphs have limited ca-
pabilities for modeling complicated interactions between three or
more viewports. Third, the graph structure only represents spatial
relations between viewports. However, it is also important for qual-
ity evaluation to consider semantic correlations between viewports.
For example, as shown in Figure 1 (b), although far away from the
node 1, the node 8 can offer guidance to assess the quality of the
road in the node 1.

To address these issues, in this paper, we propose an adaptive
hypergraph convolutional network for NR 360IQA, denoted as
AHGCN. Specifically, we first develop a multi-level viewport de-
scriptor, which combines low-level, mid-level, and high-level fea-
tures of viewports to produce hierarchical representations. Then,
we model interactions between viewports through hypergraphs
instead of graphs. For each viewport, we construct a location-based
hyperedge based on the angular distance between viewports, and
a content-based hyperedge according to the content similarity

between viewports. Experimental results on two public 360IQA
databases demonstrate that the proposed AHGCN has a clear advan-
tage over state-of-the-art 360IQA models. The main contributions
of the proposed method are listed as follows:

• We design a multi-level viewport descriptor and verify the
effectiveness of hierarchical representations for 360IQA.

• We present the first attempt to use hypergraphs to capture
interactions between viewports and validate the superiority
of hypergraphs over graphs.

• We propose an adaptive hyperedge construction method,
which considers both the locations and content features of
viewports.

The rest of this paper is organized as follows. Section 2 introduces
works related to our approach. We detail the proposed AHGCN for
NR 360IQA in Section 3, followed by experimental results presented
in Section 4. Section 5 concludes the paper.

2 RELATEDWORK
In this section, we first overview FR 360IQA metrics, then intro-
duce NR 360IQA models, and finally present the progress of the
hypergraph learning.

2.1 FR 360IQA
FR 360IQA aims to evaluate the quality of the distorted 360-degree
image with reference to the original 360-degree image. Compared
to FR 2DIQA, FR 360IQA needs to consider geometric deforma-
tion and pixel redundancy issues brought in storing 360-degree
content. Therefore, diverse variants of FR 2DIQA models are pro-
posed. Yu et al. [34] develop a spherical PSNR (S-PSNR), which
calculates PSNR for the set of points uniformly distributed on a
sphere instead of the rectangular plane. Sun et al. [28] design a
weighted spherical PSNR (WS-PSNR), which weights the error of
points sampled on the 2D plane according to their stretch degree.
Zakharchenko et al. [35] propose the Craster Parabolic Projection
PSNR (CPP-PSNR), which calculates PSNR on the Craster Parabolic
Projection domain. Xu et al. [33] put forward a non-content-based
PSNR (NCP-PSNR), which weights different regions based on the
distribution of viewing directions. Like PSNR, SSIM [30] also de-
rives various versions for FR 360IQA. Chen et al. [2] propose a
spherical SSIM (S-SSIM), which computes the similarity between
distorted and original 360-degree images on the sphere. Zhou et
al. [43] develop weighted-to-spherically-uniform SSIM (WS-SSIM).
Facebook [5] designs SSIM360, which overcomes the warping issue
of 360-degree images by a weighting mechanism.

2.2 NR 360IQA
NR 360IQA aims to assess the distorted 360-degree imagewithout re-
ferring to the original 360-degree image. Early NR 360IQA methods
usually leverage patch-level features to perform quality prediction.
Kim et al. [12, 19] propose a deep-learning-based VR image quality
assessment framework (DeepVR-IQA) with adversarial learning. It
firstly predicts quality scores of patches sampled from the distorted
360-degree image and then fuses them to obtain the final quality
score using a position-aware weighting mechanism. Similarly, Li et
al. [17] predict quality scores of patches and weight them based on
the estimated head movement (HM) and eye movement (EM) maps.
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Figure 2: Illustration of the proposed adaptive hypergraph convolutional network. E and X denote the hypergraph structure
and hierarchical features of viewports. E consists two parts: location-based hyperedges Eloc and content-based hyperedges
Econ . Q is the predicted quality score. k represents the number of semantic neighborhoods.

Considering the inconsistency between the viewport image and
the patch, viewport-based NR 360IQA methods are thus proposed.
Li et al. [18] design a multi-task framework, which simultaneously
predicts quality scores of viewports and performs HM and EM map
prediction. Zhou et al. [42] present a NR 360IQA framework, which
predicts the quality score of the distorted 360-degree image based
on multi-frequency information and local-global naturalness. Sun
et al. [27] put forward a multi-channel convolution neural network
for blind 360-degree image quality assessment (MC360IQA). It uses
a shared ResNet-34 network to parallelly extract high-level fea-
tures from six viewports, and concatenate them for quality score
regression. Recently, considering the importance of interactions be-
tween viewports, Xu et al. [32] develop a viewport-oriented graph
convolutional network (VGCN). Despite achieving remarkable per-
formance, GCN-based NR 360IQA methods still suffer from several
limitations as aforementioned.

2.3 Hypergraph Learning
Unlike conventional graphs, where each edge only connects two
nodes, hypergraphs allow edges to connect three or more nodes.
As such, hypergraphs are widely used to model complicated sys-
tems with high-order interactions. Zhou et al. [41] firstly introduce
hypergraphs into clustering, embedding, and classification tasks,
and achieve superior performance than graph-based methods. Feng
et al. [6] propose a hypergraph neural network (HGNN), which
extends hypergraph-based representation learning to learn-based
models. Jiang et al. [11] develop a dynamic hypergraph neural net-
work (DHGNN), which uses k-NN and k-means clustering methods
to construct hyperedges without a pre-defined hypergraph struc-
ture. Zhang et al. [38] put forward a self-attention-based graph
neural network for hypergraphs (Hyper-SAGNN), which learns an
aggregation function for each hyperedge.

Most of the existing studies on hypergraphs focus on classifica-
tion tasks but pay less attention to other tasks. In this paper, we
are the first to introduce hypergraphs to NR 360IQA for modeling

interactions between viewports. Moreover, we develop an adaptive
hyperedge construction method, which considers not only spatial
locations of viewports but also their content characteristics.

3 PROPOSED METHOD
In this section, we first define the problem of viewport-based NR
360IQA. Then, we introduce the proposed AHGCN in detail. Finally,
we describe the implementation and training details.

3.1 Problem Formulation
Given N viewports V = {v1, ...,vN } sampled from a distorted 360-
degree image I , we aim to predict the quality score of I using a
mapping function F :

Q = F (V;θ ), (1)

where θ represents all learnable parameters of the model F .
In this paper, we propose an adaptive hypergraph convolutional

network (AHGCN) to model F . As shown in Figure 2, AHGCN con-
sists of three parts: a viewport descriptor, a hypergraph constructor,
and a viewport quality predictor. Next, we will detail these parts in
sequence.

3.2 Viewport Descriptor
The viewport descriptor aims to extract hierarchical features from
the input viewport. Recently, deep convolutional neural networks
have exhibited impressive power in representing perceptual im-
age distortions [1, 22, 37]. Inspired by this, we bulid the viewport
descriptor on backbones, pre-trained for object recognition [16]
on the ImageNet database [3]. As shown in Figure 3, the viewport
descriptor first feeds the input viewportvi into a backbone network
f :

Li = {li ,1, ..., li ,m } = f (vi ;θf ),∀i ∈ [1,N ], (2)

where Li denotes multi-level features of the i-th viewport, li ,m
represents the feature map at them-th level, and θf represents pre-
trained weights of the backbone. Then, it individually compacts



MM ’22, October 10–14, 2022, Lisboa, Portugal Jun Fu et al.

…

…

…

…

C

MaxPooling2d

MaxPooling2d

MaxPooling2d

MaxPooling2d

Flatten

Flatten

Flatten

Flatten

FC

FC

FC

FC

Conv 1x1

Conv 1x1

Conv 1x1

Conv 1x1

Backbone Reduce Pool Flatten Transform

Figure 3: The framework of the proposed viewport descrip-
tor. Conv 1x1means the convolutional layer with the kernel
size of 1, and FC denotes the fully connected network.

each feature map into a vector:

ci , j = д(li , j ),∀j ∈ [1,m], (3)

where the function д(·) denotes the principle of “reduce-pool-flatten-
transform", ci , j ∈ Rd is the compacted result of the feature map at
j-th level. Finally, it concatenates compacted multi-level features to
obtain hierarchical representations of the i-th viewport xi ∈ Rmd :

xi = ci ,1 ∪ ci ,2 ∪ ... ∪ ci ,m . (4)

3.3 Hypergraph Constructor
To assess the distorted 360-degree image, subjects will browse the
landscape of the sphere for a while. In this viewing process, the vi-
sual information of different viewports is interacted and aggregated
for local quality evaluation [32]. In this paper, we model interac-
tions between viewports using hypergraphs, which can capture
high-order interaction by connecting multiple viewports through
one hyperedge.

The hypergraph constructor aims to discover a location-based
hyperedge and a content-based hyperedge for each viewport. The
motivation of this design is two-fold. On the one hand, when eval-
uating one viewport, the user tends to refer to viewports close to it
rather than those far away from it. This is mainly because dramatic
head movements rarely occur in the user’s viewing process. On
the other hand, the visual information of viewports with same or
similar content to the evaluated viewport may be also useful. For
example, as shown in Figure 2, the visual information of the road
in N -th viewport could offer guidance to assess the quality of the
first viewport.

Location-based Hyperedges. Motivated by the success of adding
an edge between two viewports whose angular distance is lower
than a threshold [32], we construct location-based hyperedges as
follows. The location-based hypergraph Eloc = {e1loc , ..., e

N
loc } ∈

RN×N consists of N hyperedges, and the hyperedge eiloc ∈ R1×N

collects spatial neighborhoods of the i-th viewport :

e
i ,p
loc =

{
1, if AnдularDist[(ϕi ,Θi ), (ϕp ,Θp )] ≤ δ

0, otherwise
, (5)

where ϕi and Θi denote the longitude and latitude of the i-th
viewport, respectively. The function AnдularDist(·) is defined as
arccos(cosϕicosϕp +sinϕisinϕp +cosΘicosΘp ), which computes the
angular distance between the i-th viewport and the p-th viewport.
δ is a pre-defined angular distance threshold.

Content-based Hyperedges. Motivated by the success of using
k-nearest neighborhood to construct a hyperedge based on cosine
similarity [11], we construct content-based hyperedges as follows.
The content-based hypergraph Econ = {e1con, ..., e

N
con } ∈ RN×N

also consists of N hyperedges, and the hyperedge eicon ∈ R1×N

collects semantic neighborhoods of the i-th viewport :

e
i ,p
con =

{
1, if vp ∈ N(vi )

0, otherwise
, (6)

where N(vi ) represents the neighborhood of the i-th viewport
in the feature space, and the size of the neighborhood is k . For
simiplicity, we measure the distance between viewport i and p
using the feature similarity:

si ,p =
xi · xp

max{| |xi | |2 · | |xp | |2, ϵ}
, (7)

where ϵ is set as 1e−12 to avoid division by zero.

3.4 Viewport Quality Predictor
Let us denote hierarchical representations of N viewports as X =
{x1, x2, ..., xN } ∈ RN×md and the hypergraph structure as E =
{Eloc ,Econ } ∈ RN×2N . The viewport quality predictor aims to
derive the quality score of the distorted 360-degree image through
hypergraph convolutional neural networks (HGCNs). The single-
layer HGCN [6] is calculated as follows:

H(t+1) = σ [BNγ ,β (ÊH(t )W(t ))], (8)

where BNγ ,β (·) is the batch normalization with trainable param-
eters of γ and β , σ is the Softplus activation function. H(t ) and
H(t+1) are the input and output of the t-th HGCN, respectively.
The input of the first HGCN is X, i.e. H(0) = X. W(t ) is the set of
learnable parameters of the t-th HGCN. Ê ∈ RN×N is the normal-
ized hypergraph structure, calculated as follows:

Ê = D−1/2
v ED−1

e ETD−1/2
v , (9)

where Dv = diaд{
∑
j E1, j , ...,

∑
j EN , j } ∈ RN×N is the node de-

gree matrix andDe = diaд{
∑
j ET1, j , ...,

∑
j ET2N , j } ∈ R

2N×2N is the
edge degree matrix. The output of the last HGCN is H(n) ∈ RN×1,
which contains the quality scores of all viewports. The quality score
of the entire 360-degree image is obtained by an average pooling
layer:

Q = Mean(Hn ). (10)
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Table 1: Details of the ResNet-18 architecture [10].

Layer name Output size Layer

conv1 112 × 112 × 64 7 × 7, 64, stride 2

conv2_x 56 × 56 × 64 3 × 3 max-pool, stride 2[
3 × 3, 64, 1
3 × 3, 64, 1

]
× 2

conv3_x 28 × 28 × 128
[
3 × 3, 128, 1
3 × 3, 128, 1

]
× 2

conv4_x 14 × 14 × 256
[
3 × 3, 256, 1
3 × 3, 256, 1

]
× 2

conv5_x 7 × 7 × 512
[
3 × 3, 512, 1
3 × 3, 512, 1

]
× 2

average pool 1 × 1 × 512 7 × 7 average pool

fully connected 1000 512 × 1000 fully connections

softmax 1000
1 Convolutional layer: kernel size, channel, stride.
2 Output size: height, width, channel.
3 x: the number of the layer.

3.5 Training Setup
Implementation Details. For the viewport descriptor, following
the literature [32], we choose ResNet-18 architecture [10] as the
backbone network, and select features from conv2_5, conv3_9,
conv4_13, and conv5_17 layers. The details of the ResNet-18 net-
work are presented in Table 1. In the principle of “Reduce-Pool-
Flatten-Transform", each feature map is first converted to a tensor
with the size of 8 × 8 × 16 using convolutional neural networks
with kernel size of 1 and the operation of MaxPooling2d, which is
later tranformed into a 256-dim vector by a fully connected net-
work (FC). In constructing location-based hyperedges, we set the
angular distance threshold as half of the viewport size, i.e., 45°. In
the construction of content-based hyperedges, through parameter
tuning experiments, we adopt the nearest neighbor with k = 15
on the OIQA dataset and the farthest neighbor with k = 5 on the
CVIQD dataset. For the viewport quality predictor, following the
literature [32], five HGCN layers are adopted and the viewport
feature dimensions after each HGCN layer are [256, 128, 64, 32, 1].
Loss Function. We use mean square error (MSE) as the training
objective:

L =
1
B

B∑
b=1

(Qb −Gb )
2, (11)

where B is the batch size. Qb andGb are the estimated and ground-
truth MOS values of the b-th distorted 360-degree image, respec-
tively.
Training Settings. We initialize the ResNet-18 network with pre-
trained weights provided by the literature [32]. All trainable param-
eters are optimized by the Adam optimizer [14]. The learning rate
of the ResNet-18 network is initialized to 1e−6 and fixed during
the training phase, the one for remaining trainable parameters is
initialized to 1e−3, scaled by 0.25 every 40 epochs. The maximum

of training epoch is set to 80. During training, the mini-batch size is
set to 16 and the input viewport is resized to 256 × 256. In addition,
to avoid overfitting, we use dropout [24] in the first 4 HGCN layers,
and the dropout rate is set to 0.5.

4 EXPERIMENTS
In this section, we first introduce databases, performance metrics,
and baselines. Then, we compare AHGCNwith existing competitive
IQA metrics on two public datasets. Finally, we conduct an ablation
study to verify the effectiveness of each component in AHGCN.

4.1 Databases
We evaluate the effectiveness of the proposed method on two public
datasets, i.e., OIQA database [4] and CVIQD database [26]. Follow-
ing the literature [32], we split the database into the training and
testing set, and crop 20 viewports for each distorted 360-degree
image.

OIQA Database. It contains 320 distorted 360-degree images,
which are obtained by applying 4 distortion types with 5 levels to 16
raw 360-degree images. The distortion types are JPEG compression
(JPEG), JPEG2000 compression (JP2K), Gaussian blur (BLUR), and
Gaussian white noise (WN). Mean opinion score (MOS) values of
distorted 360-degree images range from 1 to 10.

CVIQDDatabase. It collects 528 compressed 360-degree images
generated from 16 lossless source images. It considers three com-
pression distortion types, i.e., JPEG, H.264/AVC, and H.265/HEVC.
The MOS values of distorted 360-degree images are normalized and
rescaled to the range [0, 100].

4.2 Evaluation Metrics and Baselines
Standard measures [8] and the Krasula methodology [15] are used
to measure the performance of IQA metrics.

Standard measures.We choose three standard measures, i.e.,
Spearmans rank order correlation coefficient (SROCC), Pearsons
linear correlation coefficient (PLCC), and root mean squared error
(RMSE). PLCC and RMSE reflect the prediction accuracy, while
SROCC reflects the prediction monotonicity. A better 360IQAmodel
should have lower RMSE values while higher SROCC and PLCC
values. Before calculating the PLCC and RMSE, a five-parameter
logistic function [23] is applied on predictions of IQA metrics:

q̂ = β1

[
1
2
−

1
1 + exp(β2(q − β3))

]
+ β4q + β5, (12)

where q̂ is the mapping result of the predicted score q. β1, β2, β3, β4
and β5 are the parameters to be fitted.

Krasula methodology [15]. The Krasula methodology is used
to evaluate the reliability of IQA metrics from three aspects, i.e.,
the area under the ROC curve of Different vs. Similar (AUC-DS),
the area under the ROC curve of Better vs. Worse categories (AUC-
BW), and the percentage of correct classification (C0). Specifically,
AUC-BW and AUC-DS represent the capacity of IQA metrics for
distinguishing better/worse and different/similar pairs. A better
IQA metric should have higher AUC-DS, AUC-BW, and C0.

Baselines. We select thirteen representative IQA methods for per-
formance comparison. The competitive approaches include five
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FR 2DIQA metrics, i.e., PSNR, SSIM [30], MS-SSIM [31], FSIM [36],
and DeepQA [13]; three learning-based NR 2DIQA metrics, i.e.,
BRISQUE [21], BMPRI [20], and DB-CNN [39]; three FR 360IQA
metrics, i.e., S-PSNR [34], WS-PSNR [28], and CPP-PSNR [35]; two
viewport-oriented NR 360IQA metrics, i.e., MC360IQA [27] and
VGCN [32]. Compared to MC360IQA, VGCN considers interactions
between viewports. It is worth noting that this paper only uses the
local branch of the original VGCN for a fair comparison.

4.3 Performance Comparison
Table 2 and Table 3 present the results of performance comparison.
According to these tables, we can draw the following conclusions:
• PSNR and its variants are inferior to SSIM-based IQA metrics.
This is because PSNR can only reflect the pixel error between
the distorted panorama and the undistorted one, while SSIM
can reflect the structural distortion related to the human visual
system.

• Viewport-oriented NR 360IQA metrics have a clear advantage
over FR and NR 2DIQA metrics. This confirms the gap between
2DIQA and 360IQA, and points out the importance of viewport-
level information to 360IQA.

• VGCN significantly outperforms MC360IQA in terms of PLLC,
SROCC, and RMSE. This shows that it is essential to consider
interactions between viewports in 360IQA.

• Compared to VGCN (local), the proposed AHGCN achieves better
performance on both OIQA and CVIQD datasets. This verifies
the effectivenss of AHGCN.

From the performance of each method in individual distortion type,
we have the following observations:
• Compared with existing competitive IQA metrics, our proposed
AHGCN achieves comparable or superior performance across a
broad of distortion types.

• AHGCN exhibits outstanding power in evaluating compressed
360-degree images, especially for ones encoded by AVC.

• The development of image compression technology poses more
challenges to IQA. As shown in Table 3, the performance of all
IQAmetrics significantly drops from JPEG to HEVC. One possible
reason is that artifacts introduced by new encoders are more
indistinguishable compared with blockiness and tonal distortion
brought by JPEG.
Figure 4 and Figure 5 show the scatter plots of ground-truth MOS

values versus predictions of IQA models for individual distortion
types. We have the following findings:
• As shown in Figure 4, compared with the other three distortions,
predictions of JPEG compression have a lower linear correlation
with subjective scores. This reveals that the quality assessment
of JPEG compression distortion is more challenging.

• According to Figure 5, although the difficulty of 360IQA increases
with the development of coding technology, our predictions have
comparable or higher linear correlation with subjective scores
than existing NR IQA metrics.
Figure 6 presents the results of Krasula criteria on the CVIQD

database. In the significance plot, black (white) boxes mean that
the metric in the row is significantly worse (better) than the metric
in the column, and gray boxes indicate that two metrics are evenly
matched. As shown in Figure 6, our approach achieves the best
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Figure 4: Scatter plots of MOS values versus predictions of
IQA metrics on the testing set of OIQA database.
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Figure 5: Scatter plots of MOS values versus predictions of
IQA metrics on the testing set of CVIQD database.

performance in terms of AUC-DS, AUC-BW, and C0. This reveals
that our approach is more reliable than existing IQA metrics.

4.4 Cross-dataset Validation
To verify the generalization ability of the proposed AHGCN, we
conduct cross-dataset experiments. The results are listed in the
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Table 2: Performance comparison on OIQA database. The best FR and NR metrics are highlighted in bold.

JPEG JP2K WN BLUR ALL

PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE

FR

PSNR 0.6941 0.7060 1.6141 0.8632 0.7821 1.1316 0.9547 0.9500 0.5370 0.9282 0.7417 0.8299 0.5812 0.5226 1.7005

S-PSNR [34] 0.6911 0.6148 1.6205 0.9205 0.7250 0.8757 0.9503 0.9357 0.5620 0.8282 0.7525 1.0910 0.5997 0.5399 1.6721

WS-PSNR [28] 0.7133 0.6792 1.5713 0.9344 0.7500 0.9128 0.9626 0.9500 0.4890 0.8190 0.7668 1.1172 0.5819 0.5263 1.6994

CPP-PSNR [35] 0.6153 0.5362 1.7693 0.8971 0.7250 0.9904 0.9276 0.9143 0.6739 0.7969 0.7185 1.1728 0.5683 0.5149 1.7193

SSIM [30] 0.9077 0.9008 0.9406 0.9783 0.9679 0.4643 0.8828 0.8607 0.8474 0.9926 0.9777 0.2358 0.8718 0.8588 1.0238

MS-SSIM [31] 0.9102 0.8937 0.9288 0.9492 0.9250 0.7052 0.9691 0.9571 0.4452 0.9251 0.8990 0.7374 0.7710 0.7379 1.3308

FSIM [36] 0.8938 0.8490 1.0057 0.9699 0.9643 0.5454 0.9170 0.8893 0.7197 0.9914 0.9902 0.2544 0.9014 0.8938 0.9047

DeepQA [13] 0.8301 0.8150 1.2506 0.9905 0.9893 0.3082 0.9709 0.9857 0.4317 0.9623 0.9473 0.5283 0.9044 0.8973 0.8914

NR

BRISQUE [21] 0.9160 0.9392 0.8992 0.7397 0.6750 1.5082 0.9818 0.9750 0.3427 0.8663 0.8508 0.9697 0.8424 0.8331 1.1261

BMPRI [20] 0.9361 0.8954 0.7886 0.8322 0.8214 1.2428 0.9673 0.9821 0.4572 0.5199 0.3807 1.6584 0.6503 0.6238 1.5874

DB-CNN [39] 0.8413 0.7346 1.2118 0.9755 0.9607 0.4935 0.9772 0.9786 0.3832 0.9536 0.8865 0.5875 0.8852 0.8653 0.9717

MC360IQA [27] 0.9459 0.9008 0.7272 0.9165 0.9036 0.8966 0.9718 0.9464 0.4251 0.9526 0.9580 0.5907 0.9267 0.9139 0.7854

VGCN (local) [32] 0.9508 0.8972 0.6949 0.9793 0.9439 0.4541 0.9682 0.9714 0.4515 0.9838 0.9759 0.3479 0.9529 0.9444 0.6340

AHGCN 0.9669 0.9348 0.5722 0.9884 0.9607 0.3402 0.9706 0.9893 0.3944 0.9833 0.9759 0.3538 0.9682 0.9647 0.5225

Table 3: Performance comparison on CVIQD database. The best FR and NR metrics are highlighted in bold.

JPEG AVC HEVC ALL

PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE

FR

PSNR 0.8682 0.6982 8.0429 0.6141 0.5802 10.5520 0.5982 0.5762 9.4697 0.7008 0.6239 9.9599

S-PSNR [34] 0.8661 0.7172 8.1008 0.6307 0.6039 10.3760 0.6514 0.6150 8.9585 0.7083 0.6449 9.8564

WS-PSNR [28] 0.8572 0.6848 8.3465 0.5702 0.5521 10.9841 0.5884 0.5642 9.5473 0.6729 0.6107 10.3283

CPP-PSNR [33] 0.8585 0.7059 8.3109 0.6137 0.5872 10.5615 0.6160 0.5689 9.3009 0.6871 0.6265 10.1448

SSIM [30] 0.9822 0.9582 3.0468 0.9303 0.9174 4.9029 0.9436 0.9452 3.9097 0.9002 0.8842 6.0793

MS-SSIM [31] 0.9636 0.9047 4.3355 0.7960 0.7650 8.0924 0.8072 0.8011 6.9693 0.8521 0.8222 7.3072

FSIM [36] 0.9839 0.9639 2.8928 0.9534 0.9439 4.0327 0.9617 0.9532 3.2385 0.9340 0.9152 4.9864

DeepQA [13] 0.9526 0.9001 4.9290 0.9477 0.9375 4.2683 0.9221 0.9288 4.5694 0.9375 0.9292 4.8574

NR

BRISQUE [21] 0.9464 0.9031 5.2442 0.7745 0.7714 8.4573 0.7548 0.7644 7.7455 0.8376 0.8180 7.6271

BMPRI [20] 0.9874 0.9562 2.5597 0.7161 0.6731 9.3318 0.6154 0.6715 9.3071 0.7919 0.7470 8.5258

DB-CNN [39] 0.9779 0.9576 3.3862 0.9564 0.9545 3.9063 0.8646 0.8693 5.9335 0.9356 0.9308 4.9311

MC360IQA [27] 0.9698 0.9693 3.9517 0.9487 0.9569 4.2281 0.8976 0.9104 5.2557 0.9429 0.9428 4.6506

VGCN (local) [32] 0.9857 0.9666 2.7310 0.9684 0.9622 3.3328 0.9367 0.9422 4.1329 0.9597 0.9539 3.9220

AHGCN 0.9841 0.9602 2.8778 0.9826 0.9786 2.4834 0.9513 0.9512 3.6409 0.9658 0.9617 3.6184

Table 4. As shown in Table 4, the proposed AHGCN is superior to
other state-ofthe-art IQA methods by a large margin. This indicates
that the proposed AHGCN is well-generalized.

4.5 Ablation study
To validate each component of the proposed method, we conduct
ablation experiments. The experimental results are shown in Ta-
ble 5.

Effectiveness of hierachical features. Ba and Bb use adap-
tive hypergraph convolutional network (AHGCN) to model in-
teractions between viewports, but they use different features of

viewports. Compared with Bb , Ba performs better on OIQA and
CVIQD datasets. This confirms that hierachical features are more
informative than high-level ones.

Effectiveness of AHGCN. Ba , Bc and Bd use AHGCN, fully-
connected network (FC) and GCN to model interactions between
viewports, respectively. Compared with Bc , Ba and Bd perform
better on OIQA and CVIQD datasets. This is because FC cannot
capture dependencies between viewports. Compared to Bd , Ba has
higher PLCC and SROCC and lower RMSE. This shows that AHGCN
is superior to GCN in modeling interactions between viewports.



MM ’22, October 10–14, 2022, Lisboa, Portugal Jun Fu et al.

P
SN

R
S-

P
SN

R
W

S-
P
SN

R
C

P
P
-P

SN
R

SS
IM

M
S-

SS
IM

F
SI

M
D

ee
pQ

A
B

R
IS

Q
U

E
B

M
P
R

I
D

B
C

N
N

M
C

36
0I

Q
A

V
G

C
N

(l
oa

cl
)

A
H

G
C

N

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
U

C
 (

-)

Different/Similar Significance

P
SN

R
S-

P
SN

R
W

S-
P
SN

R
C

P
P
-P

SN
R

SS
IM

M
S-

SS
IM

F
SI

M
D

ee
pQ

A
B

R
IS

Q
U

E
B

M
P
R

I
D

B
C

N
N

M
C

36
0I

Q
A

V
G

C
N

(l
oa

cl
)

A
H

G
C

N

PSNR

S-PSNR

WS-PSNR

CPP-PSNR

SSIM

MS-SSIM

FSIM

DeepQA

BRISQUE

BMPRI

DBCNN

MC360IQA

VGCN(loacl)

AHGCN

(a) AUC-DS
Better/Worse

P
SN

R
S-

P
SN

R
W

S-
P
SN

R
C

P
P
-P

SN
R

SS
IM

M
S-

SS
IM

F
SI

M
D

ee
pQ

A
B

R
IS

Q
U

E
B

M
P
R

I
D

B
C

N
N

M
C

36
0I

Q
A

V
G

C
N

(l
oa

cl
)

A
H

G
C

N

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

C
0
 (

%
)

Significance

P
SN

R
S-

P
SN

R
W

S-
P
SN

R
C

P
P
-P

SN
R

SS
IM

M
S-

SS
IM

F
SI

M
D

ee
pQ

A
B

R
IS

Q
U

E
B

M
P
R

I
D

B
C

N
N

M
C

36
0I

Q
A

V
G

C
N

(l
oa

cl
)

A
H

G
C

N

PSNR

S-PSNR

WS-PSNR

CPP-PSNR

SSIM

MS-SSIM

FSIM

DeepQA

BRISQUE

BMPRI

DBCNN

MC360IQA

VGCN(loacl)

AHGCN

(b) C0

P
SN

R
S-

P
SN

R
W

S-
P
SN

R
C

P
P
-P

SN
R

SS
IM

M
S-

SS
IM

F
SI

M
D

ee
pQ

A
B

R
IS

Q
U

E
B

M
P
R

I
D

B
C

N
N

M
C

36
0I

Q
A

V
G

C
N

(l
oa

cl
)

A
H

G
C

N

0.85

0.9

0.95

1

A
U

C
 (

-)

Better/Worse Significance

P
SN

R
S-

P
SN

R
W

S-
P
SN

R
C

P
P
-P

SN
R

SS
IM

M
S-

SS
IM

F
SI

M
D

ee
pQ

A
B

R
IS

Q
U

E
B

M
P
R

I
D

B
C

N
N

M
C

36
0I

Q
A

V
G

C
N

(l
oa

cl
)

A
H

G
C

N

PSNR

S-PSNR

WS-PSNR

CPP-PSNR

SSIM

MS-SSIM

FSIM

DeepQA

BRISQUE

BMPRI

DBCNN

MC360IQA

VGCN(loacl)

AHGCN

(c) AUC-BW

Figure 6: The results of Krasula methodology on the CVIQD
database.

Effectiveness of content-based hyperedges. Table 6 shows
the impact of hyperparameter k on the performance of the proposed
method. k = 0 indicates that content-based hyperedges are not
considered. As shown in Table 6, the proposed method achieves
the best performance at the settings of k = 5 and k = 15 on CVIQD
and OIQA datasets. This indicates that content-based hyperedges
are useful for NR 360IQA.

5 CONCLUSION
In this paper, we propose an adaptive hypergraph convolutional
neural network for NR 360IQA, dubbed as AHGCN. It designs a
multi-level viewport descriptor to extract hierarchical representa-
tions from viewports, and models interactions between viewports
through hypergraphs instead of graphs. In the hypergraph con-
struction, it considers both the locations and content features of

Table 4: Cross-dataset Validation. The best performance are
highlighted in bold.

Method
Train OIQA/Test CVIQD Train CVIQD/Test OIQA

PLCC SROCC RMSE PLCC SROCC RMSE

BRISQUE [21] 0.7543 0.6891 9.3805 0.6816 0.5238 1.5471

BMPRI [20] 0.8007 0.7492 8.5600 0.6483 0.5890 1.6097

DBCNN [39] 0.7896 0.7684 8.7669 0.5817 0.5299 1.7198

MC360IQA [27] 0.8886 0.8629 6.5526 0.4375 0.3329 1.9012

VGCN [32] 0.9241 0.9050 5.4616 0.7911 0.7832 1.2934

AHGCN 0.9436 0.9366 4.6223 0.8258 0.7867 1.1785

Table 5: Ablation study on each component of the proposed
method.

Method Ba Bb Bc Bd

Hierarchical features ✓ ✓ ✓

High-level features ✓

FC ✓

GCN ✓

AHGCN ✓ ✓

CVIQD
PLCC 0.9658 0.9559 0.9607 0.9647
SROCC 0.9617 0.9489 0.9535 0.9574
RMSE 3.6184 4.1017 3.8774 3.6770

OIQA
PLCC 0.9682 0.9301 0.9425 0.9594
SROCC 0.9647 0.9164 0.9306 0.9516
RMSE 0.5225 0.7677 0.6985 0.5891

Table 6: The impact of k on the performance of AHGCN.
The best performance are highlighted in bold.

k
CVIQD OIQA

PLCC SROCC RMSE PLCC SROCC RMSE
0 0.9647 0.9578 3.6755 0.9607 0.9557 0.5797
5 0.9658 0.9617 3.6184 0.9612 0.9580 0.5767
10 0.9624 0.9561 3.7936 0.9659 0.9638 0.5412
15 0.9619 0.9540 3.8176 0.9682 0.9647 0.5225
20 0.9614 0.9547 3.8398 0.9631 0.9604 0.5625

viewports. Experimental results demonstrate that the proposed
AHGCN achieves state-of-the-art performance and shows an im-
pressive generalization capability across a broad of distortion types.
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