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Abstract—Recently, the pre-processed video transcoding has
attracted wide attention and has been increasingly used in
practical applications for improving the perceptual experience
and saving transmission resources. However, very few works have
been conducted to evaluate the performance of pre-processing
methods. In this paper, we select the source (SRC) videos and
various pre-processing approaches to construct the first Pre-
processed and Transcoded Video Database (PTVD). Then, we
conduct the subjective experiment, showing that compared with
the video sent to the codec directly at the same bitrate, the ap-
propriate pre-processing methods indeed improve the perceptual
quality. Finally, existing image/video quality metrics are evaluated
on our database. The results indicate that the performance of the
existing image/video quality assessment (IQA/VQA) approaches
remain to be improved. We will make our database publicly
available soon.

Index Terms—Video quality assessment, Subjective evaluation,
Database, Pre-processing for video transcoding

I. INTRODUCTION

With the rapid development of media technology and the
popularity of mobile display devices, professionally-generated
content (PGC) videos and user-generated content (UGC)
videos become very popular. However, due to limited trans-
mission bandwidth and coding efficiency, the video quality
is often severely compromised. To provide users with better
experience when watching videos with same or even fewer
transmission resources, pre-process have been applied in on-
line streaming services for video coding [1]. Therefore, an
evaluation model that reflects the quality of user experience is
needed [2], [3]. But there are few works on quality assessment
(QA) that explore how to measure the subjective quality of pre-
processed based video transcoding. And thus, the QA method
for the pre-processed and transcoded video is attracted and in
high demand.

The image/video quality assessment (IQA/VQA) can be
divided into two categories: subjective and objective, accord-
ing to whether human is involved or not. The subjective QA
requires humans as the observers to evaluate the quality [4]—
[6]. The subjective QA is precise, reliable, and indispensable
since the human perception scores are usually identified as the
ground truth to evaluate objective QA methods [7]. However,
it is too labor-intensive and time-consuming to be applied to
practical applications [8]. On the contrary, the objective QA
model is an alternative QA solution for practical applications,
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Fig. 1. The representative frames of all the 15 source (SRC) videos in our
established PTVD covering various types

usually taking the characteristics of spatial-temporal informa-
tion and human visual system (HVS) into account [9], [10].
The quality scores computed for the input images/videos by
a well designed objective QA model are expected to concur
with subjective perception.

In general, objective IQA/VQA methods can be classified
into three categories: full-reference (FR), reduced-reference
(RR), and no-reference (NR). For FR methods, the full infor-
mation of original contents is needed, e.g. mean square error
(MSE) and peak signal-to-noise ratio (PSNR). Considering
the HVS, structure similarity between original and distorted
images is measured in structural similarity index (SSIM) [11],
with several variants, e.g. MS-SSIM [12] and FSIM [13]. The
visual information fidelity (VIF) [14] measures the degree
of information loss of the distorted images compared to the
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reference images. Recently, video multi-method assessment
fusion (VMAF) [15] proposed by Netfix has attracted much
attention. The support vector machine (SVM) [16] is utilized
in VMATF to fuse several metrics, proved to be more consistent
with subjective feelings. RR methods only require the part of
the information from original contents [3]. The NR methods
estimate the quality without the original multimedia informa-
tion, which are more applicable in most real-world scenarios,
e.g. Mittal et al. [17] used natural scene statistics in the spatial
domain, and binocular vision mechanisms were utilized in
BSVQE [18]. However, they are not skilled in distinguishing
the quality with similar bit rates and evaluating the perfor-
mance of pre-processing methods for video transcoding. There
exists a few works focusing on enhanced images/videos quality
assessment [19]-[21]. Nonetheless, the impacts of transcoding
distortion are not taken into account.

In this paper, we make the first attempt to carry out the
specific subjective database for the evaluation of pre-process
based video transcoding, which contains both static frames and
dynamic videos. The video database, called Pre-processed and
Transcoded Video Database (PTVD), is built for the purpose
of QA for the PTVs. The proposed PTVD has two subsets:
PTVD-I for static frames of PTVs and PTVD-II for original
dynamic videos. Each of the subsets contains 15 reference
videos, 570 processed PTVs, and the corresponding subjective
scores from 30 observers.

The rest of the paper is organized as follows: Section II in-
troduces the establishment of our datasets PTVD. The analyses
of the PTVD are shown in Section III. Section IV presents the
experimental results of existing metrics and we conclude the
paper in Section V.

II. PRE-PROCESSED AND TRANSCODED VIDEO DATABASE

To investigate the perceptual quality of the PTVs, the first
pre-processed and transcoded video database is established,
including two subsets: PTVD-I for static frames and PTVD-
Il for dynamic video sequences. We apply several typical
pre-processing methods (including sharpening, smoothing, a
mixture of them, etc.) to selected original video contents.

A. Selection of PTV Contents

Our constructed PTVD contains 15 source (SRC) videos,
covering various contents (e.g. cartoon, sports, games, screen

content, natural scenes). All SRC videos are cut into 7
seconds sequences with the same resolution of 1920x 1080.
For demonstration, Fig. 1 shows a typical frame of 15 SRC
videos. Fig. 1 (a)-(g) are from public domain while Fig. 1
(h)-(o) are provided by Youku Inc [22].

In order to accurately describe the characteristics of these
video contents, the spatial information (SI) and temporal
information (TI) [23] of the SRC videos are illustrated in
Fig. 2. Here, SI represents scene details while TI describes
temporal variations. One can see that the distributions of the
SI and TI are expansive, reflecting that our SRC videos cover
a large range of content features.

B. Generation of PTV sequences

Pre-processing helps to turn images/videos into a form that
can be easily processed by codecs [24]. To be specific, after
appropriate pre-processing methods, codecs may save the bit
rates with similar subjective quality, or visibly improve the
subjective experience using equivalent bandwidth resources.
Generally, the pre-processing methods for a SRC video include
sharpening, smoothing, a mixture of the processing methods
mentioned above, and network-based end-to-end frameworks
[25], [26]. Specifically, sharpening methods aim to enhance
the structure so that objects can still keep their shape when
transcoding distortion is introduced, leading to better visual
experience. Suitable smoothing approaches help codecs to
utilize fewer bit rates for approaching identical subjective
quality. In common applications, sharpening and smoothing
approaches can be leveraged together in order to approach the
best performance. Moreover, an end-to-end network is able to
predict proper pre-processing method, the representative one
among which is Narrowband HD 2.0 [27].

We use the sharpening and smoothing algorithm introduced
in Narrowband HD 1.0 [28], which provides one parameter
to control sharpening amplitude and the other one to control
smoothing amplitude. Following the principle of the variable-
controlling approach, we choose 10 sets of the pre-processing
methods mentioned above with various groups of parameters

TABLE I
HYPOTHETIC REFERENCE CIRCUITS (HRCS)
OF EACH SOURCE (SRC) VIDEO.

HRC-ID | Sharpening | Smoothing Bit rates
1-5" 0 0 VL, L, M, H  VH ™
6-8 1 1 L, M, H
9-11 1 10 L, M, H
12-14 1 100 L, M, H
15-17 2 1 L, M, H
18-20 2 10 L, M, H
21-23 2 100 L, M, H
24-26 5 1 L, M, H
27-29 5 10 L, M, H
30-32 10 1 L, M, H
33-35 10 10 L, M, H
36-38 nbhd2 L, M, H

original PTVs without pre-processing
VL Very Low; L: Low; M: Medium; H: High; V H: Very High
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covering usual application scenarios from tweaking to massive
alters, and one end-to-end pre-processing network: Narrow-
band HD 2.0 (nbhd2), as is shown in Table I.

Each SRC video is encoded into 5 bitrate levels as {Very
Low (VL), Low (L), Medium (M), High (H), Very High
(VH)}, while other Hypothetic Reference Circuits (HRCs)
are encoded into 3 bitrate levels as {L, M, H}. The HRC-1
(original PTV at VL bit rates) and the HRC-5 (original PTV at
VH bit rates) are applied to provide the benchmark for other
36 types of HRCs. The codec for all HRCs is x264 [29].

C. Subjective Testing

To guarantee the accuracy of the mean opinion score (MOS)
values for PTVD, 30 ratings are collected for each video.
To demonstrate the stability and consistency in the subjective
evaluation, 30 subjects are randomly divided into two groups
with 15 individuals.

1) PTVD-I: As mentioned above, 570 original and pro-
cessed PTVs have been generated to establish the PTVD. For
each HRC video, a typical frame is selected randomly from
all frames. PTVD-I is made up of 570 PTV frames mentioned
above. Note that the frames of the same content are from the
same original frame of the SRC video.

The subjective test is conducted with the single stimulus
method under a normal lighting condition following the guid-
ance of the ITU-R BT.500 [30]. We adopt the absolute cate-
gory rating (ACR) scale. The scores are measured on 5 discrete
scales with 1 for bad and 5 for excellent. Since our subjective
experiment aims to compare different pre-processing methods,
the subjects are encouraged to pay attention to details such as
the edge, texture, and unnatural artifacts.

The subjective test system is displayed on the laptop with a
14-inch LED monitor with 1920x 1080 resolution, 8GB RAM,
and 64-bit Windows operating system. The PTV frames will
be played on full screen for 5 seconds and then the subjects
give their subjective scores for the current image by pressing
a button from 1 to 5. The 30 subjects include 16 males and 14
females. Each of them is required to evaluate all 570 images
while taking a break every half an hour watching. Before the
formal subjective test, there exists an instruction provided to
each subject for clearly explaining how to give the subjective
scores for the PTVs, helping them to get familiar with the test
and establishing stable assessment criteria.

2) PTVD-II: Different from the PTVD-I composed of PTV
static frames, which shows the impact of the pre-processing
methods in the spatial domain, the PTVD-II requires the
subjects to evaluate the entire PTVs. The setting of PTVD-
II subjective test is consistent with that of PTVD-I subjective
test. It is clear that PTVD-II is closer to the real application
scenarios and more effective to measure the performance of
pre-processing methods in the spatial-temporal domain. The
subjective setting of PTVD-II follows the regulation of the
ITU-T P910 [31].

III. ANALYSES OF THE SUBJECTIVE TEST

The subjects with the correlation coefficient to the average
quality lower than 0.75 are considered as outliers, and their

ratings are removed from our database [3]. At the same time,
a new subject is required to take part in the subjective test.
There remain 30 valid subjects for each PTVD subset after
outlier removal. For each PTV, any single score S; that does
not fit the 3o criterion will be regarded as exceptional data
and will be eliminated until every S; fits the criterion [32].

|S; = 5| < 30, (1)

where S means the average value, and o means the standard
deviation of valid scores in one PTV content. MOS values are
computed for each PTV in the database by averaging scores
of valid scores.

30 subjects are randomly divided into two bisected groups,
each of which consists of 15 individuals. The correlation
between the two groups is shown in Fig. 3. With the par-
ticipants in each group increasing, the correlation between
the two groups of MOS increases obviously. In PTVD-I,
the correlation is 0.9627, and in PTVD-II, the correlation is
0.9739. It is sufficient to show the robustness and feasibility
of our subjective experiments.
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Fig. 3. The correlation between two groups of subjective scores. The X-axis
represents the number of subjects per group, while the Y-axis represents the
correlation.

Fig. 4 shows the relation of perceptual experience to
pre-processing parameters for all contents. Appropriate pre-
processing methods indeed effectively improve the subjective
quality, while improper algorithm parameters will impair the
perceived quality. When the sharpening parameter is at a
relatively low level (1 or 2), the subjective quality increases at
first and then decreases as the smoothing parameter increases.
The turning points of the MOS curve may dissimilate at
different bit rates. When the smoothing parameter is fixed (1
or 10), the subjective quality performs much similarly as the
sharpening parameter increases. The nbhd2 method performs
positively in these scenarios at various bit rates.

However, not all videos meet these rules, since the pre-
processing algorithm has a different impact on videos with
different content. For example, the images of animated con-
tent (BigBuckBunny) show monotonous increase in subjective
quality with the increase of smoothing parameter in Fig. 5,
when the sharpening parameter is small (1 or 2). And we can
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Fig. 4. The relation of average MOS to pre-processing parameters and bitrates
for all contents. The X-axis represents pre-processing parameters, while the
Y-axis represents MOS values. The blue solid line refers to PTVD-I and the
orange dotted one refers to PTVD-II. The three bunches of lines from top to
bottom mean bitrate H, M, L, respectively.

notice that this video does not meet the pattern in Fig. 4. To ex-
plain this phenomenon, we visualize the representative frames
of BigBuckBunny with different pre-processing parameters,
respectively in Fig. 6 (a) and Fig. 6 (b). Fig. 6 (a) and (b) take
the same sharpening parameter 2 and the same coding mode
of low bit-rate, while adapting different smoothing parameters
respectively as 1 and 100. We can observe that compared with
smoothing parameter as 1 in Fig. 6 (a), the details of tree trunk
and leaf lines in the background are almost completely erased
in Fig. 6 (b), but observers are generally more concerned about
the quality of the foreground, so that the visual information
loss is hardly noticed by the observers. Meanwhile, we can
notice that high smoothing parameters can also reduce the
block effect at low bit-rate point and improve the quality
of coded video sequence to some extent. Therefore, a larger
smoothing parameter can give the video a better subjective
score within a certain range.
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Fig. 5. The relation of average MOS to pre-processing parameters and bitrates
for BigBuckBunny content.

IV. EXPERIMENTAL RESULT

Three evaluation criteria are selected to evaluate the per-
formance of different metrics, consisting of Pearson Lin-
ear Correlation Coefficient (PLCC), Spearman Rank Order
Correlation Coefficient (SROCC), and Root Mean Squared
Error (RMSE). The PLCC evaluates the linear relationship

e
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(a) Sharpening parameter = 2, (b) Sharpening parameter = 2,
smoothing parameter = 1, low bit smoothing parameter = 100, low bit
rate rate

Fig. 6. Comparison of animated content BigBuckBunny with the same
sharpening parameters

between predicted score and MOS value, while the SROCC
measures the monotonicity. The RMSE measures the accuracy
of prediction. The better consistency with human perception is
reflected in PLCC and SROCC closing to 1 as well as RMSE
closing to 0.

The performance of the objective metrics is shown in
TABLE II. FSIM and VIF have outstanding performance com-
pared with other objective metrics. However, the correlation
between subjective and objective scores is still relatively low.
Thus, there is plenty of room for performance improvement.
Since few specific algorithms are proposed for assessment of
pre-processing for video transcoding, a specifically designed
model for PTV quality assessment is in demand.

TABLE I
PERFORMANCE OF THE OBJECTIVE METRICS IN OUR DATABASE.
PTVD-1 PTVD-II

Metric PLCC SROCC RMSE | PLCC SROCC RMSE
PSNR 0.4848  0.4306  0.7460 | 0.5504  0.4179  0.7053
SSIM [11] 0.4543  0.4232  0.7598 | 0.5394  0.3907 0.7114
MS-SSIM [12] | 0.7739  0.7646  0.5402 | 0.7390  0.5736  0.5691
FSIM [13] 0.8615  0.8555  0.4331 | 0.8333 0.7043  0.4671
VIF [14] 0.8590  0.8485  0.4366 | 0.8291 0.8284  0.4723
VMAF [15] 0.8168  0.8056  0.4921 | 0.8105  0.8101 0.4948
IFC [33] 0.7487  0.7440  0.5654 | 0.7135  0.7022  0.5919
BRISQUE [17] | 0.4279  0.4011 0.7708 | 0.3929  0.3781 0.7769
NIQE [34] 05117  0.4993  0.7327 | 0.4088  0.3979  0.7710

The best performance results are highlighted in bold
V. CONCLUSION

In this work, we create the first PTVD for the increasingly
popular pre-processed video transcoding application scenarios,
covering both static frames and dynamic videos of PTVs.
The database considers the perceived quality of pre-processing
for video transcoding and demonstrates the impact of pre-
processing methods. We also evaluate the performance of
existing objective metrics in this database. The results show
that a specific model for these scenarios is urgently required.
Meanwhile, we will make our database publicly available. In
the future, we will introduce more pre-processing methods and
consider building a new model.
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