
Image Super-Resolution Quality Assessment:
Structural Fidelity Versus Statistical Naturalness

Wei Zhou1,2, Zhou Wang1, Zhibo Chen2
1Dept. of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada
2CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System

University of Science and Technology of China, Hefei 230027, China
Email: {wei.zhou, zhou.wang}@uwaterloo.ca; chenzhibo@ustc.edu.cn

Abstract—Single image super-resolution (SISR) algorithms
reconstruct high-resolution (HR) images with their low-resolution
(LR) counterparts. It is desirable to develop image quality as-
sessment (IQA) methods that can not only evaluate and compare
SISR algorithms, but also guide their future development. In
this paper, we assess the quality of SISR generated images in a
two-dimensional (2D) space of structural fidelity versus statistical
naturalness. This allows us to observe the behaviors of different
SISR algorithms as a tradeoff in the 2D space. Specifically, SISR
methods are traditionally designed to achieve high structural
fidelity but often sacrifice statistical naturalness, while recent
generative adversarial network (GAN) based algorithms tend
to create more natural-looking results but lose significantly on
structural fidelity, suggesting the desire to incorporate both
types of methods. Furthermore, such a 2D evaluation can be
easily fused to a scalar quality prediction. Interestingly, we
find that a simple linear combination of a straightforward local
structural fidelity and a global statistical naturalness measures
produce surprisingly accurate predictions of SISR image quality
when tested using public subject-rated SISR image datasets.
Code of the proposed SFSN model is publicly available at
https://github.com/weizhou-geek/SFSN.
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I. INTRODUCTION

Single image super-resolution (SISR) aims to recover a
high-resolution (HR) image given a single low-resolution (LR)
image as the input. SISR plays a significant role in a wide
range of applications, from satellite imaging, web browsing,
to video surveillance [1]. During the past decades, numerous
SISR algorithms have been proposed, including interpolation-
based [2], [3], dictionary-based [4]–[6], and deep learning-
based methods [7]–[12]. The visual appearance and quality
of SISR generated images vary dramatically when different
SISR approaches are exploited. Nevertheless, there is still no
consensus so far on how the quality of SISR created images
should be assessed. This is critically important because image
quality assessment (IQA) methods not only help evaluate and
compare SISR algorithms, but also guide the development of
future SISR methodologies.

In general, the most reliable quality assessment method is
human subjective evaluation [13]–[15]. But subjective tests are
usually expensive, time-consuming and hard to be integrated
into SISR optimization frameworks. Therefore, it is highly
desirable to design effective objective IQA models for SISR
generated images. Depending on the availability of the original
pristine image, full-reference (FR) IQA [16]–[22] and no-
reference (NR) IQA approaches [23]–[27] may be applied.
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Fig. 1. SISR generated images and 2D quality assessment of statistical
naturalness versus structural fidelity (SF vs SN). A0, B0, C0: original HR
images; A1, B1, C1: reconstructed images by VDSR [7] at scaling factor 4;
A2, B2, C2: reconstructed images by SRGAN [12] at scaling factor 4.

Additionally, since many SISR algorithms produce blurry
reconstructed images, image sharpness assessment (ISA) or
blur measures [28]–[30] may also be employed.

Despite the success in other IQA applications, existing
FR-IQA, NR-IQA and ISA methods often fall short when
evaluating the quality of SISR generated images. The gap is not
only on the accuracy in predicting subjective scores, but also
on effectively interpreting the nature of key quality degradation
trends in SISR images. An example is given in Fig. 1,
where traditional SISR methods such as VDSR [7] are highly
effective at achieving high signal fidelity in terms of signal-to-
noise ratio or structural similarity [16] when compared to the
original images, but the resulting images often look artificial.
On the other hand, recently proposed generative adversarial
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Fig. 2. Sample SISR generated images at different scaling factors (top) and their corresponding points in (SF vs SN) plots (bottom), where the level sets of
the proposed quality prediction Q(y) are also shown.

network (GAN) based approaches such as SRGAN [12] are
impressive at producing natural-looking reconstructed images,
but their signal fidelity measures are significantly lower. These
observations motivate us to look at the problem in a two-
dimensional (2D) space of structural fidelity versus statistical
naturalness, as demonstrated at the bottom part of Fig. 1.

II. 2D QUALITY ASSESSMENT OF SISR IMAGES

Multi-scale image decomposition such as Laplace and
wavelet transforms have been shown to be highly effective
at both capturing the local perceptual degradation in terms
of just noticeable differences or structural distortion, but also
characterizing the statistical naturalness of images. Therefore,
we apply a multi-scale image transform and construct local
structural fidelity and global statistical naturalness measures
both in the transform domain. Given the original HR image x
as the reference, and the SISR generated test image y, inspired
by the success of the MS-SSIM algorithm [17], we define the
subband patch level local structural fidelity measure as:

SF k
local(x, y) =

σxy + C

σxσy + C
, (1)

where x and y denote the patches extracted from the k-
th subband from the reference and test images, respectively,
σx and σy are their standard deviations, σxy represents the
covariance between x and y, and C is a small positive
stabilizing constant. The scale level structural fidelity measure

is then computed by spatial pooling:

SF k(x,y) =
1

M

M∑
m=1

SF k
local(x, y), (2)

where M denotes the number of local patches in the subband.
Finally, we fuse across scales to obtain the overall structural
fidelity between x and y:

SF (x,y) =
K∏

k=1

[SF k(x,y)]αk , (3)

where K is the total number of scales/subbands, and αk is
the weight assigned to the k-th scale as in [17]. Furthermore,
natural texture-rich content tends to have higher entropy in
the transform domain [31]. Thus, we use the global entropy
of transform coefficients as a statistical naturalness measure:

SN(y) = −
∑

P (cy) log(P (cy)), (4)

where P (cy) denotes the probability of subband coefficients
of the test image y and may be approximated with histograms.

Although the proposed pair of (SF, SN) measure is rather
simple, it offers a meaningful 2D illustration of the behaviors
of SISR algorithms. Fig. 1 shows three original HR images
with their corresponding SISR images generated by VDSR [7]
and SRGAN [12]. The (SF vs. SN) plot clearly indicates
the relative advantage of VDSR over SRGAN on the SF
measure, and conversely the advantage of SRGAN over VDSR



on the SN measure. The pattern is consistent over all three
content, as indicated by the pairs of points (A1, A2), (B1,
B2) and (C1, C2). Fig. 2 shows images generated by different
SISR algorithms applied to LR images of different sizes and
enhanced by different scaling factors. The (SF vs. SN) plots
offer a platform to examine the behaviors of different SISR
algorithms across scaling factors. It can be observed that the
the general trend of any SISR algorithm is that both SF and
SN measures drop with increasing scaling factors. However,
the speed of change may vary depending on the algorithm
and possibly the image content. For example, the DRRN [10]
method appears to be much more sensitive to scaling factor
change than VDSR [7] and DCSCN [9] for the right image.

III. FUSING 2D ASSESSMENT FOR 1D QUALITY
PREDICTION

In practice, it is often desirable to obtain a single quality
score indicating the overall quality of SISR generated images.
This can be achieved by collapsing the proposed 2D measure
into a scalar quality prediction, e.g., by a linear combination:

Q(y) = wFSF (x,y) + wNSN(y), (5)

where the weighting factors wF and wN adjust the relative
importance of the two measures, and are set empirically at 0.9
and 0.1, respectively, in the current implementation. We name
Q the SFSN measure, which creates straight lines as level
sets in the 2D space, as shown in the bottom plots of Figs. 1
and 2. This scalar quality prediction can then be validated by
comparing against subject-ratings of SISR generated images.

TABLE I. SRCC PERFORMANCE COMPARISON OF OBJECTIVE
MODELS ON WIND [13], CVIU [14] AND QADS [15] DATABASES.

Methods WIND CVIU QADS Average
PSNR 0.6320 0.5663 0.3544 0.5176

SSIM [16] 0.6125 0.6285 0.5290 0.5900
MS-SSIM [17] 0.8246 0.8048 0.7172 0.7822

FSIM [18] 0.8503 0.7481 0.6885 0.7623
CW-SSIM [19] 0.8626 0.7591 0.3259 0.6492

GSIM [20] 0.7649 0.6505 0.5538 0.6564
GMSD [21] 0.7966 0.8469 0.7650 0.8028
SPSIM [22] 0.8141 0.6698 0.5751 0.6863

BRISQUE [23] 0.7676 0.5863 0.5463 0.6334
NIQE [24] 0.6263 0.6525 0.3977 0.5588

BLIINDS-II [25] 0.5281 0.3705 0.3838 0.4275
DIIVINE [26] 0.5465 0.5479 0.4817 0.5254

LPSI [27] 0.6669 0.4883 0.4079 0.5210
S3 [28] 0.4455 0.5050 0.4636 0.4714

LPC-SI [29] 0.5375 0.5450 0.4902 0.5242
HVS-MaxPol-1 [30] 0.6166 0.6421 0.6170 0.6252
HVS-MaxPol-2 [30] 0.6309 0.6313 0.5736 0.6119
Proposed (SF only) 0.8642 0.8546 0.7867 0.8352
Proposed (SN only) 0.5873 0.6415 0.6115 0.6134

Proposed SFSN 0.8867 0.8714 0.8407 0.8663

We validate the proposed fused SFSN quality prediction
method on three public SISR IQA databases, including WIND
[13], CVIU [14], and QADS [15]. The WIND database consid-
ers 8 interpolation algorithms with scaling factors of 2, 4, and
8. It contains 312 SISR images corresponding to 13 reference
images. The CVIU database consists of 30 reference HR im-
ages and 1,620 SISR generated images created by 9 algorithms
with 6 pairs of (scaling factor, kernel width) combinations,
where a larger scaling factor corresponds to a larger blur kernel
width. The QADS database contains 20 original HR images
and 980 images generated by 21 SISR algorithms, including 4
interpolation-based, 11 dictionary-based, and 6 deep learning
(DL) based models applied for upsampling factors of 2, 3,

and 4. In all three databases, each SISR generated image is
subject-rated and annotated by a value of mean opinion score
(MOS). We compare the proposed method with 8 FR-IQA, 5
NR-IQA, and 4 ISA models. The Spearman Rank-order Cor-
relation Coefficient (SRCC) comparison results are reported
in Table I, where the best performances are highlighted in
bold. Other commonly used evaluation criteria [32] produce
very similar results but are not included due to space limit.
Despite the straightforward implementations of both SF and
SN assessment, and the simple linear fusion approach, SFSN
achieves surprisingly competitive performance against state-
of-the-art IQA and ISA models.

TABLE II. SRCC PERFORMANCE COMPARISON OF OBJECTIVE
MODELS ON DIFFERENT SISR CATEGORIES ON QADS [15] DATABASE.

Methods Interpolation Dictionary DL Overall
PSNR 0.2972 0.3808 0.2656 0.3544

SSIM [16] 0.4015 0.5481 0.5121 0.5290
MS-SSIM [17] 0.6340 0.7425 0.7104 0.7172

FSIM [18] 0.5471 0.6846 0.6637 0.6885
CW-SSIM [19] 0.5254 0.4362 0.0986 0.3259

GSIM [20] 0.3946 0.5332 0.5661 0.5538
GMSD [21] 0.7054 0.7709 0.7363 0.7650
SPSIM [22] 0.4545 0.5518 0.5871 0.5751

BRISQUE [23] 0.5096 0.4951 0.4357 0.5463
NIQE [24] 0.4639 0.4547 0.4190 0.3977

BLIINDS-II [25] 0.1814 0.3628 0.6547 0.3838
DIIVINE [26] 0.4267 0.4175 0.5654 0.4817

LPSI [27] 0.2726 0.3309 0.6034 0.4079
S3 [28] 0.4016 0.3171 0.5458 0.4636

LPC-SI [29] 0.3301 0.3798 0.2558 0.4902
HVS-MaxPol-1 [30] 0.4584 0.5048 0.5032 0.6170
HVS-MaxPol-2 [30] 0.5318 0.4742 0.2991 0.5736
Proposed (SF only) 0.8273 0.7964 0.7766 0.7867
Proposed (SN only) 0.6210 0.5118 0.4975 0.6115

Proposed SFSN 0.8979 0.8379 0.8004 0.8407

Since different categories of SISR methods often generate
drastically different appearance of the reconstructed images, it
is intriguing to investigate how IQA methods perform for dif-
ferent SISR categories. The results on the QADS [15] database
are reported in Table II, where the proposed method deliv-
ers superior performance in each of the interpolation-based,
dictionary-based, and DL-based SISR categories, as well as
when all three categories are evaluated together. Ablation test
has also been conducted to assess the performance when only
the SF or SN measure is employed. The results are shown in
Tables I and II. It appears that both SF and SN measures make
important contributions, but the best performance is achieved
by the SFSN model that combines both of them.

IV. CONCLUSION

In this work, we opt to a 2D approach to assess the quality
of SISR generated images as a tradeoff between structural
fidelity and statistical naturalness. This allows us to better un-
derstand the nature of quality degradations and better observe
the varying behaviors of different SISR algorithms. We also
show that rather straightforward implementations of a local
structural fidelity assessment, a global statistical naturalness
measure, and a linear combination of the two, result in a
SFSN model that achieves surprisingly high correlations with
MOS when tested using public databases. In the future, better
structural fidelity and statistical naturalness measures, and
more sophisticated combination methods may be developed.
The 2D assessment idea may also be integrated into novel
SISR algorithms, aiming to achieve both goals at the same
time and meanwhile balance between them.
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