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ABSTRACT
With the fast proliferation of online video sites and social media
platforms, user, professionally and occupationally generated con-
tent (UGC, PGC, OGC) videos are streamed and explosively shared
over the Internet. Consequently, it is urgent to monitor the content
quality of these Internet videos to guarantee the user experience.
However, most existing modern video quality assessment (VQA)
databases only include UGC videos and cannot meet the demands
for other kinds of Internet videos with real-world distortions. To
this end, we collect 1,072 videos from Youku, a leading Chinese
video hosting service platform, to establish the Internet video qual-
ity assessment database (Youku-V1K). A special sampling method
based on several quality indicators is adopted to maximize the
content and distortion diversities within a limited database, and a
probabilistic graphical model is applied to recover reliable labels
from noisy crowdsourcing annotations. Based on the properties
of Internet videos originated from Youku, we propose a spatio-
temporal distortion-aware model (STDAM). First, the model works
blindly which means the pristine video is unnecessary. Second,
the model is familiar with diverse contents by pre-training on the
large-scale image quality assessment databases. Third, to measure
spatial and temporal distortions, we introduce the graph convolu-
tion and attention module to extract and enhance the features of
the input video. Besides, we leverage the motion information and
integrate the frame-level features into video-level features via a bi-
directional long short-term memory network. Experimental results
on the self-built database and the public VQA databases demon-
strate that our model outperforms the state-of-the-art methods and
exhibits promising generalization ability.
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1 INTRODUCTION

Figure 1: The descriptions of UGC, PGC and OGC videos.

Videos account for the majority of Internet traffic in recent years
[2]. Specifically, Internet videos can be classified into user gener-
ated content (UGC), professionally generated content (PGC), and
occupationally generated content (OGC) as shown in Figure 1. Dur-
ing the processing chain, e.g. acquisition, compression, storage and
transmission, multiple distortions will be introduced, leading to
visual quality degradation [4, 8, 55, 57]. To guarantee the quality
of experience (QoE) of end-users, image/video quality assessment
(IQA/VQA) plays a significant role to guide the current image pro-
cessing and video coding systems [58]. According to human en-
gagement, VQA can be roughly divided into two categories, namely
subjective quality assessment and objective quality assessment [40].
Subjective quality assessment requires human rating, thus is able to
produce the most accurate quality labels for database construction
[33]. However, it is labor-intensive and time-consuming, which is
unsuitable for real-time applications. Therefore, to automatically
predict the perceptual quality, objective quality assessment is de-
veloped and has been deeply researched in the past decades [5].
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Figure 2: Sample videos in the Youku-V1K database.

Traditional video quality assessment databases are usually con-
structed by selecting standard high-quality videos as the reference,
and then adding synthetic corruptions to the reference. This is the
common practice in previous years [40]. Later, with the develop-
ment of online video sites and social media platforms, users can
change their role into the producer to freely create contents, which
is called UGC [44]. Different from conventional cases, the reference
provided by the users are not always perfect and vary consider-
ably in contents and qualities. For example, capture impairments
including photography equipment limitations, bad shooting envi-
ronments, improper camera parameters will deteriorate the visual
quality.

Going a step further, PGC and OGC videos are also in great
demands to attract more users and achieve larger business values.
PGC videos are produced by professionals and viewed by users.
OGC videos are produced by industry professionals with a certain
level of knowledge and professional background, and these peo-
ple will receive corresponding rewards [10]. Compared with UGC
videos created by ordinary users, PGC andOGC videos are generally
exhibited in high quality. However, camera language in PGC and
OGC videos [7] will bring additional challenges, such as the case
that blur is imposed on background or unimportant objects to high-
light the main subject/object, which is considered as low-quality
in conventional VQA problems. Besides, cross-platform sharing
PGC and OGC videos will also introduce editing, processing and
transcoding distortions. Therefore, the challenges of Internet VQA
can be summarized as (a) no high-quality video for comparison,
(b) diverse contents including meaningful scenarios (e.g. natural
scenes, dramas, cartoons, screen content, etc.) as well as low con-
tent quality videos, (c) complex mixed distortions, namely capture
distortions, compression, transmission error, transcoding artifacts,
quality fluctuations and conflicts brought by camera language.

Designing suitable Internet VQA metrics relies on an accurate
labeling database. However, to our best of knowledge, there has

been no existing work considering quality assessment for UGC,
PGC and OGC videos. Therefore, we build the Internet video quality
assessment database (Figure 2) with 1,072 videos collected from
Youku (Youku-V1K). Representative videos are sampled according
to their quality indicators [1] including spatial activity, temporal ac-
tivity, predicted mean opinion score (MOS), etc. Afterwards, online
subjective experiments are conducted to achieve human ratings.
Finally, we apply a probabilistic graphical model [23] to recover the
ground truth labels given the noisy and unreliable crowdsourcing
annotations.

To copewith the challenges in Internet VQA, we propose a spatio-
temporal distortion-aware model (STDAM). Firstly, this model takes
only the video frames as input, which needs no reference video for
comparison. Secondly, the frame-level model is pre-trained on an
existing large-scale IQA database to be acquainted with diverse sce-
narios and image distortions. Thirdly, we apply several techniques
to handle the complex distortions in Internet VQA, namely 1) graph
convolution module, which aims to construct relations among long-
distance pixels and cross-scale features, thus enlarge the receptive
field of spatial distortions in Internet videos, 2) attention module,
which enhances the feature representation for salient regions and
important channels, and alleviate the conflicts brought by camera
language mainly in PGC and OGC videos, 3) optical flow module,
which corresponds to the quality degradation caused by camera
motions especially in UGC videos, 4) bi-directional long short-term
memory (LSTM) module, which deals with the quality fluctuation in
Internet videos based on the assumption that the quality of current
frame is influenced by its previous and later frames, and the im-
portance of each frame to final quality prediction is different. The
proposed model is verified on the self-built Youku-V1K database
and several public VQA databases.

The main contributions can be listed as follows:
• With the carefully sampled videos to maintain content and
distortion diversity, we establish the Youku-V1K database in-
cluding UGC, PGC and OGC videos to provide a benchmark
for designing and comparing VQA metrics.

• We conduct a subjective experiment on the self-built crowd
rating system, and utilize a probabilistic graphical model to
provide more reliable quality labels from noisy crowdsourc-
ing annotations.

• We propose the STDAM to automatically predict the percep-
tual quality of Internet videos, which is validated on several
databases.

2 RELATEDWORK
2.1 Databases for VQA
Databases serve as the crucial benchmark for designing and evalu-
ating algorithms in many computer vision tasks, e.g. classification,
segmentation, detection, etc. Naturally, quality assessment of visual
contents is also one of these tasks which rely on accurate label-
ing databases. Traditional VQA databases like IRCCyN/IVC 1080i
[35], LIVE [40], CSIQ [45] only contain dozens of reference videos
distorted with compression artifacts or transmission errors. Under
such settings, the high-quality pristine videos are available and the
distortions are all synthetic. However, it is not the case for Internet
video quality assessment.
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Table 1: Database summary for video quality assessment.

Databases Source # of videos(Ref/Dis) Video length Resolution Distortion type Subjective environment

With
high-quality
reference

IRCCyN/IVC 1080i [35] High-quality reference 24/168 9-12s 1080p synthetic Laboratory
LIVE [40] High-quality reference 10/150 8-10s 768x432 synthetic Laboratory
CSIQ [45] High-quality reference 12/216 10s 832x480 synthetic Laboratory

Without
high-quality
reference

CVD2014 [34] Captured -/234 10-25s 480p, 720p authentic Laboratory
LIVE-Qualcomm [12] Captured -/208 15s 1080p authentic Laboratory

LIVE-VQC [42] Captured -/585 10s 480p-1080p authentic Crowdsourcing

KoNViD-1k [17] Flicker -/1200 8s 540p authentic (UGC) Crowdsourcing
YouTube-UGC [44] YouTube -/1380 20s 360p-2160p authentic (UGC) Crowdsourcing

Youku-V1K Youku -/1072 10s 1080p authentic (UGC+PGC+OGC) Crowdsourcing

Later, more databases containing no perfect-quality reference
videos, e.g. CVD2014 [34], LIVE-Qualcomm [12], LIVE-VQC [42]
are proposed focusing on the effect of cameras and in-capture distor-
tions. In these databases, the perceptual quality is mainly affected
by the inherent limitations, improper operations of cameras and un-
predicted object motion and light condition. Besides, databases with
videos uploaded by users and shared online [17, 44] also have no
reference video for comparison. Apart from in-capture distortions
[12], transcoding artifacts during the uploading and transmission
process over limited bandwidth could be involved. These databases
can be denoted as UGC VQA databases. However, the PGC and
OGC videos account for a large part of online media too, which are
not considered in the previous databases. Therefore, we build the
Internet VQA database Youku-V1K with extremely diverse contents,
distortions, and accurate quality labels. Moreover, a probabilistic
graphic is applied to infer reliable quality labels from crowdsourc-
ing results. The summary of existing VQA databases is listed in
Table 1.

2.2 Objective VQA Metrics
To precisely evaluate the perceptual quality of videos, traditional
methods mainly focus on the structural [47], gradient [29], motion
[38], saliency [52] information and usually require reference videos
for comparison. The hand-crafted features based on natural scene
statistics and support vector regression (SVR) are frequently utilized
to predict the quality [36] when the pristine videos are unavailable.
Afterwards, with the development of deep learning technologies,
we can assess the quality with convolutional neural networks (CNN)
in an end-to-end manner. However, most of the above-mentioned
methods are designed for synthetic distortions, which have poor
generalization ability for the authentic distortions [28].

The existence of real-world VQA databases promotes the de-
sign of blind VQA (BVQA) model for videos suffering from various
complex distortions. TLVQM [20] is proposed by considering low
complexity features for each frame and high complexity features
for representative frames. VIDEVAL [44] is another hand-crafted
feature based model that derives from features of several famous
blind IQA/VQA metrics. Feature selection in hand-crafted models
is a knowledge-based process that relies on the rich experience
and comprehensive understanding of the media contents and dis-
tortions. Later, some learning based methods are proposed, e.g.,
V-MEON [28] for compression artifacts, MLSP-VQA using multi-
level spatially pooled features [13]. Zhang et al. [54] design a blind
video quality assessment model in the 3D-DCT domain, and ap-
ply a resampling strategy from image to video. Considering the

(a) (b)

Figure 3: Resolution and category distribution of Youku-
V1K database.

content-aware characteristics and temporal-memory effect, Li et
al. develop an objective deep neural network VSFA [22] for quality
assessment of videos in the wild. However, the spatio-temporal
distortions and the conflicts brought by camera language cannot be
well addressed in these methods, thus we propose a new model to
effectively handle the complicated corruptions in Internet videos.

3 YOUKU-V1K DATABASE
In this section, we first describe the video sampling process to con-
struct the Youku-V1K database. Then, the detailed configurations
of the subjective experiment are presented. Finally, given the noisy
crowdsourcing ratings, we apply a probabilistic graphical to cleanse
the data.

Figure 4: Feature distributions of Youku-V1K database.
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3.1 Database Construction
10,000 video clips with diverse contents are collected from an online
video site youku.com. Firstly, resolution and content are considered
to conduct the pre-selection and there remain 3,000 videos for care-
ful sampling. The video sampling strategy is similar to [46], while
more quality indicators are considered in the sampling process
including spatial activity, temporal activity, blockiness, blurriness,
brightness, contrast, flickering, colorfulness and predicted image
quality. The first eight factors are calculated with the image quality
toolbox [1] and the last is computed by the VGG-16 network pre-
trained on image quality assessment databases. The sampling steps
can be summarized as follows:

(1) Normalize the feature space for each video clip.
(2) Uniformly divide the normalized range into N(=3) bins for

all features as done in [46].
(3) Change the order of bins randomly.
(4) For the current bin, select one video clip and add it to the

database if the Euclidean distance of between this clip and
clips in the database is greater than a threshold (0.3) accord-
ing to [46].

(5) Switch to the next bin and repeat (4) until the database has
enough samples.

After sampling, the distributions of different resolutions and
content categories are shown in Figure 3. Besides, the feature dis-
tributions and uniformity of videos in each bin are shown in Figure
4 and Figure 5. As we can conclude from these figures, the content
diversity and feature uniformity are promised. Note that all videos
are resized to 1080p before the subjective experiment in accordance
with the display resolution.
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Figure 5: Feature uniformity of Youku-V1K database.

3.2 Subjective Testing
We adopt the Absolute Category Rating (ACR) [18] in our experi-
ment. It is a single stimulus evaluation method and voting is per-
formed after each viewing. The video quality is divided into five
levels including 5-Excellent, 4-Good, 3-Fair, 2-Poor, 1-Bad. The user
interface is shown in Figure 6, and the crowd rating system is
developed by ourselves.

(a) Viewing. (b) Rating.

Figure 6: User interface of subjective experiment.

More than 22,000 crowdsourcing results are collected in our
subjective experiment, and each video is rated by more than 15
observers which meets the requirements of Rec. ITU-R BT.500-9
[3]. The subjects are volunteers with payment aging from 18 to 49.
5 videos with different qualities are displayed in the pre-test to let
the participants familiar with grading rules. In the formal test, each
participant is asked to rate 100 unlabeled videos randomly. During
the experiment, subjects can take breaks after rating a video to
avoid eye fatigue.

3.3 Data Cleansing
In crowdsourcing tasks, noise always exists owing to the annota-
tor’s unreliability and task’s difficulty. Thus, we adopt a probabilistic
graphical model to recover the ground truth distribution of video
rating.

Figure 7: The graphic model for recovering ground truth la-
beling. re ,s is given by the subjects, ye ,s , xe ,s and ze ,s are la-
tent variables, θe , ϵs and πs are parameters.

The model is illustrated in Figure 7, where S and E are the total
number of subjects and test videos, re ,s is the label given by subject
s to test video e , ye ,s , xe ,s are the label given by subject s for
video e according to the underlying ground truth distribution and
subject’s irregular behaviors. ze ,s follows Bernoulli distribution
determined by subject s . θe ,n denotes the probability of acquiring
scoren for video e , ϵs denotes how conscientious subject s is, and πs
denotes the irregular behavior of subject s . The conditional density
of subjective rating [23] is given as:

p(R |π , ϵ , θ ) =
∏
e ,s∈A

[ϵs (
N∏
n=1

θ [re ,s=n]
e ,n ) + (1 − ϵs )(

N∏
n=1

π [re ,s=n]
s ,n )],

s .t . 0 ≤ θe ,n ≤ 1,
N∑
n=1

θe ,n = 1, 0 ≤ πs ,n ≤ 1,
N∑
n=1

πs ,n = 1.

(1)

Accordingly, we apply Maximum Likelihood Estimates to infer
the parameters, and the likelihood function is δ̂ = argmax

δ
logp(R |δ ),

where δ = (θ, ϵ, π ). Then, the ground truth quality can be expressed
as the expectation of the estimated distribution

∑N
n=1 n · θe ,n .

(a) (b)

Figure 8: (a) MOS distribution. (b) MOS versus STD distribu-
tion of Youku-V1K database.

Session 11: Multimedia HCI and Quality of Experience MM ’21, October 20–24, 2021, Virtual Event, China

1251



Figure 9: The structure of the frame-level model including the graph convolution, attention and optical flow modules.

After data cleansing, the MOS and MOS versus STD distribution
are presented in Figure 8. As is shown, more high-quality videos
are included and the standard deviations of the opinion scores
parameter is 0.19, which falls in the range [0.11, 0.21] for standard
VQA experiments [16]. Compared with previous UGC databases,
Youku-V1K utilizes the probabilistic graphic model to guarantee
the label accuracy with less intensive labor, which is verified in
Section 5.4.

4 PROPOSED MODEL
Based on the proposed Youku-V1K database, we develop a no-
reference spatio-temporal distortion-aware model (STDAM) to ef-
fectively evaluate the spatial, temporal distortions, and alleviate the
conflicts brought by camera language. STDAM is illustrated in Fig-
ure 9 and Figure 10, and it can be decomposed into the frame-level
and video-level model.

4.1 Frame-level Model
The frame-level model contains the graph convolution, attention
and optical flow modules. The graph convolution module (GCM)
and attention module (AM) are designed to handle spatial distor-
tions and camera language conflicts in Internet videos. Specifically,
GCM can capture long-distance [27] and cross-scale relations [24],
thus enlarge the receptive field of spatial distortions. AM is
utilized to enhance the features of salient regions and discrimina-
tive channels for quality regression, and alleviate the conflicts
brought by camera language mainly in PGC and OGC videos.
Moreover, the optical flow module (OFM) is utilized to measure the
temporal distortions caused by the cameramotions especially
in UGC videos.

Graph Convolution Module: The original frame I1 and its
down-sampled version I2 are first fed into ResNet-18 [15] for dif-
ferent scales feature extraction, and the extracted features are
represented as F1 and F2. To explore the long-distance relations
and model visual dependency, we build the in-scale graph on F1.

The individual spatial locations are defined as the graph nodes
F1 = [f11, f12, ..., f1N ] ∈ RN×c , where N = h × w indicates the
number of graph nodes. Each location node is a c dimensional
vector, and h, w , c denote the height, width and channels of ex-
tracted feature F1. Then, the affinity between every two nodes are
represented as the cosine similarity:

A1(f1i , f1j ) =
f1i · f1j

∥ f1i ∥


f1j

 , (2)

where A1 is the affinity matrix for the in-scale graph. The normal-
ized adjacency matrix G1 is obtained using symmetric Laplacian
normalization G1 = D− 1

2A1D
− 1

2 , where D denotes the diagonal
matrix and Dii =

∑
j A1 i j . The feature map F ′

1 after in-scale graph
convolution is F ′

1 = G1F1W1, whereW1 is the trainable weight
matrix. Besides, we adopt cross-scale graph convolution for the
down-sampled frame feature map F2. The affinity of cross-scale
graph nodesA2 and the normalized adjacencymatrixG2 are defined
as:

A2(f1i , f2j ) =
f1i · f2j

∥ f1i ∥


f2j

 , (3)

Gi j
2 =

exp A1(f1i , f2j )∑N
j=1 exp A1(f1i , f2j )

. (4)

Then, the cross-scale graph convolution is F ′
2 = G2F2W2, whereW2

is the trainable weight matrix. Afterwards, in-scale and cross-scale
information are integrated through summation F and one-layer
graph convolution F ′ as shown in Figure 9. By building the graphs,
we can obtain more structure information and enlarge the number
of propagation neighbors during graph convolution.

Attention Module: It is introduced to enhance the features for
discriminative channels and salient regions. At first, the spatial
information is aggregated by average and max pooling operations.
A shared multi-layer perceptron is followed to explore the inter-
channel relations [48] and infer better channel-wise attention. We
merge both features by element-wise summation, and the total
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Figure 10: The structure of the video-level model including the frame-level model and the bi-directional LSTM module.

channel attention can be expressed as:
Ac = σ (MLP(AvдPool (F ′)) +MLP(MaxPool (F ′))), (5)

Fc = Ac ⊗ F ′, (6)
where Fc is the channel-refined feature, ⊗ denotes element-wise
multiplication, and σ is the Sigmoid activation function. Then, we
utilize graph convolution to generate the spatial attention map by
capturing the relations among adjacent and long-distance regions.
During the graph convolution, the channel dimension is reduced
to one for highlighting the most informative regions. The spatial
attention map are fused with feature Fc , which is complementary
to channel attention:

As = G1(G1FcWs1)Ws2, (7)

Fcs = As ⊗ Fc , (8)
where Fcs denotes the spatial and channel refined feature,Ws1 and
Ws2 are the trainable weight matrix to reduce channel dimension.
Finally, we apply a residual connection by adding F1 and Fcs , and
this feature can be utilized for global average pooling.

Optical FlowModule: Camera shake and movement will bring
visual quality degradation. Thus, to effectively evaluate such distor-
tion, optical flow is computed for motion information representa-
tion. Since we mainly focus on the global motion of cameras and the
computation complexity of optical flow is high, we down-sample
the video frames before optical flow generation (default in OpenCV)
[9]. ResNet-18 is followed to extract motion-aware features from
the optical flow maps. The motion-aware features are then concate-
nated with channel and spatial refined features as the frame-level
feature vectors X for quality estimation.

4.2 Video-level Model
As is shown in Figure 10, we feed the features extracted from the
frame-level model into the bi-directional LSTM [37] module, which
is aimed at evaluating the influence of quality fluctuations in
Internet videos.

Bi-directional LSTM Module: The frame-level features [X1,
...,XT ] are sent to the bi-directional LSTM (A/A′), since the current
frame quality is influenced by previous and next frames accord-
ing to [39]. The hidden states of the first LSTM layer are initial-
ized as ®H10, ®H1(T+1). The current hidden state ®H1t , ®H1t are calcu-
lated from the current input Xt , and previous/next hidden state
®H1(t−1)/ ®H1(t+1) as follows:

®H1t = A1(Xt , ®H1(t−1)), (9)

®H1t = A′
1(Xt , ®H1(t+1)), (10)

where A1, A′
1 are the LSTM units and t denotes the current frame

index. The first layer output vector Yt for current frame is obtained
by concatenating ®H1t and ®H1t . There are two bi-directional LSTM
layers in our framework, and the final feature representation for
each frame isZt . One fully-connected layer is adopted to reduce the
feature dimension of Zt to 1, which indicates the frame importance.
After that, Softmax normalization is utilized to guarantee the sum
of the frame importance equaling to 1. The video-level feature Z is
then denoted as:

Z =
T∑
t=1

αtZt , (11)

where αt indicates the weight for the t-frame, and T frames are
contained in total. We apply two fully-connected (FC) layers for
quality regression to estimate the final perceptual quality of an
Internet video.

4.3 Implementation Details
The experiments are conducted on NVIDIA 1080Ti GPUs and the
model is implemented with PyTorch. The ResNet-18 feature extrac-
tion network is initializedwith theweights pre-trained on ImageNet
[6]. Firstly, we train the frame-level model with graph convolution
and attention module on the KonIQ-10k database [25], which is
a IQA database with over 10,000 images. Therefore, it can be fa-
miliar with diverse contents and distortions. Secondly, the total
frame-level model (including optical flow module) is trained with
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frames of Internet videos. L2 loss and Adam optimizer [19] with
an initial learning rate 0.0001 is adopted in this step. The learning
rate is scaled by 0.25 every 5 epochs and 20 epochs are required
for training the frame-level model. Finally, we uniformly sample 10
frames from each video to train the video-level model as done in
[56]. Loss function and optimizer are the same as the previous step,
but we only need to train the video-level model for 10 epochs with
the weight of frame-level model fixed. The mini-batch size is set to
16 during training and the MOS values are scaled to [0, 1] in our
experiment.

5 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we compare our proposed STDAMwith state-of-the-
art (SOTA) metrics on the self-built Youku-V1K and other public
VQA databases. Ablation study and cross database tests are also
conducted to verify the effectiveness and robustness of STDAM.

5.1 Databases and Performance Measures
Four databases are utilized in our experiment, namely self-built
Youku-V1K, KoNViD-1k [17], LIVE-VQC [42] and YouTube-UGC
[44]. The latter three databases are described in Section 2.1, and
all the databases for performance comparison contain no reference
videos, thus full-reference VQA metrics cannot be evaluated. Spear-
man’s rank order correlation coefficient (SROCC) and Pearson’s
linear correlation coefficient (PLCC) are adopted to measure the
prediction monotonicity and accuracy. Their values are in the range
of [0,1] and the higher value means the better performance. Note
that before calculating PLCC, a five-parameter logistic regression
is adopted as suggested by Video Quality Experts Group [14].

5.2 Performance Evaluation
To evaluate the performance of the proposed STDAM, we divide
each database into 80% training and 20% testing videos [43]. Accord-
ing to [26], the experiments are conducted 10 times with random
train-test splitting operation to avoid content bias, and we report
the median value and standard deviation of SROCC and PLCC
for performance comparison. The compared "completely blind"
opinion unaware metrics which do not require training include
NIQE [32], ILNIQE [53] for IQA and VIIDEO [31] for VQA. The
opinion aware metrics which require training are BRISQUE [30],
GM-LOG [50], HIGRADE [21], FRIQUEE [11], CORNIA [51], HOSA
[49], pre-trained VGG-19 [41], pre-trained ResNet-50 [15] for IQA
and V-BLIINDS [36], TLVQM [20], VIDEVAL [44] for VQA. The
experimental results are listed in Table 2, and we can observe that
our proposed STDAM achieves competitive performance on all
four databases. For Youku-V1K, KoNViD-1k and YouTube-UGC
databases, STDAM can achieve 3%-6% performance improvement
compared with SOTA methods. Besides, the VQA models including
V-BLIINDS, TLVQM and VIDEVAL perform much better than other
IQA models especially on LIVE-VQC database, since this database
contains more temporal distortions caused by large camera motions.
Therefore, the VQA metrics considering motion-related features
usually achieve higher performance. Moreover, the standard devia-
tions of SROCC and PLCC for Youku-V1K database are generally
smaller than other databases, indicating that the quality labels for
the videos in Youku-V1K database are more accurate and reliable.

Table 2: SROCC and PLCC performance comparison on four
VQAdatabases. The best and second-best performing results
are marked in boldface and underlined.

SROCC Youku-V1K KoNViD-1k LIVE-VQC YouTube-UGC

NIQE 0.5782(±0.0112) 0.5417(±0.0347) 0.5957(±0.0571) 0.2379(±0.0487)
ILNIQE 0.4427(±0.0121) 0.5264(±0.0294) 0.5037(±0.0712) 0.2918(±0.0502)
VIIDEO 0.4210(±0.0124) 0.2988(±0.0561) 0.0332(±0.0856) 0.0580(±0.0536)
BRISQUE 0.7804(±0.0268) 0.6567(±0.0351) 0.5929(±0.0681) 0.3820(±0.0519)
GM-LOG 0.7930(±0.0241) 0.6578(±0.0324) 0.5881(±0.0683) 0.3678(±0.0589)
HIGRADE 0.8486(±0.0170) 0.7206(±0.0302) 0.6103(±0.0680) 0.7376(±0.0338)
FRIQUEE 0.8512(±0.0182) 0.7472(±0.0263) 0.6579(±0.0536) 0.7652(±0.0301)
CORINA 0.8464(±0.0176) 0.7169(±0.0245) 0.6719(±0.0473) 0.5972(±0.0413)
HOSA 0.8480(±0.0144) 0.7654(±0.0224) 0.6873(±0.0462) 0.6025(±0.0344)
VGG-19 0.8647(±0.0180) 0.7741(±0.0288) 0.6568(±0.0536) 0.7025(±0.0281)
ResNet-50 0.8791(±0.0157) 0.8018(±0.0255) 0.6636(±0.0511) 0.7183(±0.0281)
V-BLIINDS 0.7822(±0.0245) 0.7101(±0.0314) 0.6939(±0.0502) 0.5590(±0.0496)
TLVQM 0.7832(±0.0237) 0.7729(±0.0242) 0.7988(±0.0365) 0.6693(±0.0306)
VIDEVAL 0.8294(±0.0183) 0.7832(±0.0216) 0.7522(±0.0390) 0.7787(±0.0254)

STDAM 0.9141(±0.0089) 0.8448(±0.0189) 0.7931(±0.0340) 0.8341(±0.0306)

PLCC Youku-V1K KoNViD-1k LIVE-VQC YouTube-UGC

NIQE 0.6046(±0.0097) 0.5530(±0.0337) 0.6286(±0.0512) 0.2776(±0.0431)
ILNIQE 0.4685(±0.0110) 0.5400(±0.0337) 0.5437(±0.0717) 0.3302(±0.0579)
VIIDEO 0.4148(±0.0128) 0.3002(±0.0539) 0.2146(±0.0903) 0.1534(±0.0498)
BRISQUE 0.7801(±0.0278) 0.6576(±0.0342) 0.6380(±0.0632) 0.3952(±0.0486)
GM-LOG 0.7958(±0.0545) 0.6636(±0.0315) 0.6212(±0.0636) 0.3920(±0.0594)
HIGRADE 0.8507(±0.0166) 0.7269(±0.0287) 0.6332(±0.0652) 0.7216(±0.0334)
FRIQUEE 0.8508(±0.0185) 0.7482(±0.0257) 0.7000(±0.0587) 07571(±0.0324)
CORINA 0.8479(±0.0188) 0.7135(±0.0236) 0.7183(±0.0420) 0.6057(±0.0399)
HOSA 0.8485(±0.0144) 0.7664(±0.0207) 0.7414(±0.0410) 0.6047(±0.0347)
VGG-19 0.8704(±0.0156) 0.7845(±0.0246) 0.7160(±0.0481) 0.6997(±0.0281)
ResNet-50 0.8821(±0.0154) 0.8104(±0.0229) 0.7205(±0.0434) 0.7097(±0.0276)
V-BLIINDS 0.7844(±0.0249) 0.7037(±0.0301) 0.7178(±0.0500) 0.5551(±0.0465)
TLVQM 0.7849(±0.0243) 0.7688(±0.0238) 0.8025(±0.0360) 0.6590(±0.0302)
VIDEVAL 0.8304(±0.0187) 0.7803(±0.0233) 0.7514(±0.0420) 0.7733(±0.0257)

STDAM 0.9120(±0.0074) 0.8415(±0.0173) 0.8204(±0.0342) 0.8297(±0.0279)

5.3 Ablation Study
We conduct the ablation experiments to verify the effectiveness
of each key component in our proposed STDAM. The modified
ResNet-18 with fully-connected network for regression is regarded
as the baseline model (BL), and we analyze the validity of graph con-
volution, attention, optical flow, and bi-directional LSTM modules
as well as the pre-training stage on IQA databases.

Graph Convolution Module:We first evaluate the graph con-
volution module by adding this module to the baseline model
(BL+GCM). The experiments are conducted on the four databases
to better illustrate the influence of spatial distortion. As is shown
in Figure 11, BL+GCM can achieve 1%-3% improvement on the
databases.

Attention Module: By adding attention module to BL+GCM
(BL+GCM+AM), SROCC performance of our model further im-
proves 0.01-0.02. The attention maps are visualized in Figure 12 to
validate that human attention is focused on salient objects when
assessing the visual quality.

Pre-training Stage: The ability to handle spatial distortions in
Internet videos can be raised by pre-training on IQA databases
with diverse contents and distortions (BL+GCM+AM+PS). We can
observe from Figure 11 that BL+GCM+AM+PS brings up to 5%
improvement on YouTube-UGC database.

Optical Flow Module: It is introduced to better deal with the
temporal distortion caused by large camera motions. The entire
frame model is denoted as BL+GCM+AM+PS+OFM, and it can
further achieve much improvements on LIVE-VQC databse.
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Figure 11: Ablation study on four VQA databases.

Bi-directional LSTM Module: We also exhibit the improve-
ments brought by the bi-directional LSTM module (BL+GCM+AM+
PS+OFM+BiLSTM). The effects of previous and next frame to cur-
rent frame quality are considered in this module, and we can obtain
the highest SROCC value for majority of the databases.

Figure 12: Spatial attention maps for some video frames in
Youku-V1K database.

We exhibit the samples of video frames with their associate MOS
values and predicted qualities in Figure 13. The predicted scores are
very close to the ground truth labels, which means the proposed
STDAM is able to handle local distortions (e.g. Figure 13 (b)) and
camera language conflicts (e.g. Figure 13 (c)).

5.4 Cross Database Tests
To evaluate the generalization ability of STDAM and applicability
of Youku-V1K database, cross database experiments are conducted.
We train STDAM on one database and test it on another. In Table 3,
we report the cross database performance of STDAM. Compared
with the SROCC and PLCC presented in [44], our proposed STDAM
demonstrates better performance, representing robust generaliza-
tion capacities. Moreover, the applicability of Youku-V1K database
is verified. The model pre-trained on Youku-V1K shows better gen-
eralization ability on YouTube-UGC compared to the other two
databases, which demonstrates the effectiveness of Youku-V1K.

6 CONCLUSION
In this paper, we build the Youku-V1K database for perceptual
quality assessment of Internet videos (e.g. UGC, PGC and OGC

(a) MOS: 1.42 Predicted score: 1.63

(b) MOS: 3.54 Predicted score: 3.58

(c) MOS: 4.75 Predicted score: 4.43

Figure 13: The samples of video frames with their associate
MOS values and predicted quality scores.

Table 3: SROCC and PLCC performance of cross database
tests.

Train/Test KoNViD-1k LIVE-VQC YouTube-UGC Youku-V1K

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

KoNViD-1k - - 0.7316 0.7699 0.6750 0.7033 0.8579 0.8486
LIVE-VQC 0.7086 0.7139 - - 0.6840 0.6691 0.8351 0.8312

YouTube-UGC 0.7476 0.7380 0.6718 0.7052 - - 0.8625 0.8625
Youku-V1K 0.7193 0.7255 0.6624 0.6808 0.7358 0.7314 - -

videos), which provides a benchmark for designing and comparing
VQA metrics. Besides, we conduct a subjective experiment with
the minimal human effort by applying a probabilistic graphical
model to recover ground truth labels from noisy crowdsourcing
ratings. Finally, we propose a spatio-temporal distortion-aware
model called STDAM for blind Internet VQA. It is composed of
the graph convolution, attention, optical flow, and bi-directional
LSTM modules to handle diverse contents, complex distortions and
camera language conflicts. Experimental results on the self-built
and public VQA databases demonstrate that our model has the
capability to distinguish complicated distortions and make human-
like quality estimations. We believe that the Youku-V1K database
as well as the STDAM model can provide useful guidance to the
screening, optimization, distribution steps of current online video
sites and social media platforms.
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