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Abstract—For the problem of stereoscopic image quality mea-
surement (SIQM), it is difficult to design an efficient yet reliable
full reference (FR) SIQM method due to our limited knowledge
about the properties of human binocular vision. Inspired by the
fact that the input visual information is hierarchically processed
in our human brain, we consider different levels of distortion in
an image cause individual degradations on hierarchical features,
and propose to fuse the degradations on hierarchical features
to facilitate the task of FR-SIQM. As one of the most classical
convolutional neural network (CNN) architectures, the VGG-16
network is first applied to each view of the stereopair to build
hierarchical deep feature representations based on which monoc-
ular quality estimation (MQE) and binocular quality fusion
(BQF) are then performed. Specifically, the MQE stage estimates
a set of layer-wise monocular quality scores by measuring the
similarity between the hierarchical feature maps of the distorted
monocular view and those of the reference monocular view.
The BQF stage estimates a set of layer-wise binocular quality
scores via a weighted average of the corresponding layer-wise
monocular quality scores. The adaptive weights are determined
by a modified hierarchical feature energy-based Gain-Control
model. Finally, the layer-wise binocular quality scores across
all layers are fused into an overall binocular quality score via
regression. Experiments on three benchmark databases validate
the state-of-the-art performance of our method.

Index Terms—Image quality measurement, stereoscopic image,
full reference, monocular quality estimation, binocular quality
fusion, convolutional neural network.

I. INTRODUCTION

BJECTIVE image quality measurement (IQM) is impor-
tant for various image processing and computer vision
applications such as diagnostic medical imaging [1], [2],
object detection [3], face recognition [4], and environment
monitoring [5], [6]. Quality measurement of traditional 2D
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images have been extensively studied, and many promising
quality estimators have been proposed [7-13]. Over the past
years, owing to the increase of stereoscopic three-dimensional
(3D) image/video services in our daily life, stereoscopic 3D
visual contents are becoming the new research target of IQM
[14-23].

Compared with its 2D counterpart, stereoscopic 3D image
quality measurement (SIQM) encounters more challenges as
more influential factors such as image distortion, depth per-
ception, visual discomfort, and visual presence, need to be
considered simultaneously [24]. However, this task is quite
challenging given that the interactions among these factors
are complex and it is difficult to precisely simulate them
without sufficient understanding about human binocular visual
properties. Due to this, the existing works mainly focus on
investigating the influence of each individual factor on 3D
quality of experience (QoE) [14-23] and this paper focus on
evaluating the visual quality of distorted stereoscopic images
in a full-reference (FR) manner.

A stereoscopic image pair contains two slightly different
monocular views (captured by two position-shifted cameras),
each of which is controlled to be separately projected onto
the human retina. Owing to the slight inter-view difference
(i.e., disparity), depth perception emerges with binocular fu-
sion in human brain. In practice, a stereopair can be either
symmetrically or asymmetrically distorted. For example, some
researchers have proposed asymmetric coding methods for
stereoscopic videos to achieve maximal coding efficiency
while without causing any perceptible quality degradation
[25]. An effective FR-SIQM metric should be well applicable
to handle both symmetrically and asymmetrically distorted
stereoscopic images. In general, the FR-SIQM task can be
much easier for the symmetric case because even a simple
application of traditional FR 2D-IQM metrics to the two
monocular views separately can achieve fairly reliable per-
formance [26-29]. Unfortunately, when it comes to the asym-
metric case, the simple averaged FR 2D-IQM estimators are
found to deliver much less effectiveness. The asymmetrically
distorted stereopairs can make the FR-SIQM problem much
more challenging primarily due to the different distortion types
and levels of the two monocular views. Previous works have
observed that the overall quality of an asymmetrically distorted
stereopair is a result jointly affected by monocular quality and
binocular fusion, depending on the distortion types and levels
[30-32].
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To design a robust FR-SIQM metric that is well applicable
to both symmetric and asymmetric distortions, an intuitive idea
is to address the above two issues in a way coincident with
the visual perception processes. It is known that the input
visual information is hierarchically processed in human brain
and the HVS understands an image according to hierarchical
(i.e., low-level, mid-level, and high-level) features [33]. The
human brain will try to understand the semantic information
of an image and rate the quality according to hierarchical
features. Scene understanding and quality evaluation are in-
trinsically related since both of them depend on how the
HVS perceives an image and distortions can be a strong
effector of scene understanding [34,35]. This inspires us to
investigate the relationship between the change of hierarchical
features and perceived quality degradation. The key principle
is that perceptible quality degradations can lead to measurable
changes of hierarchical features.

Convolutional neural network (CNN) [36], which has
achieved outstanding performance in many different computer
vision tasks [37-39], is capable of capturing hierarchical
features from images. In CNNs, the lower layers respond to
low-level primitive image elements such as edges, corners and
shared common patterns, and the higher layers tend to extract
high-level semantics like object parts or faces. Inspired by this,
we propose to use deep CNNs to build hierarchical feature
representations of stereoscopic images and propose a FR-
SIQM method by measuring and fusing the degradations on
the extracted hierarchical features. Although the similar idea
has been utilized to address the traditional FR 2D-IQM prob-
lem [40], it remains a great challenge to adapt it to stereoscopic
images where the binocular fusion is deemed as a key step.
For our concerned FR-SIQM task, the extracted hierarchical
features are utilized as the bases for both monocular quality
estimation (MQE) and binocular quality fusion (BQF). The
main contributions are summarized as follows:

« We make the first attempt to extract hierarchical fea-
tures from pre-trained deep CNN to facilitate FR-SIQM
and demonstrate that perceptible quality degradations of
stereoscopic images can lead to measurable changes of
hierarchical deep features.

o We utilize the extracted hierarchical deep features as the
bases for both MQE and BQF. Especially for BQF, a
hierarchical feature energy-based Gain-Control model is
formulated to adaptively fuse the two monocular-view
quality scores.

e We demonstrate that both MQE and BQF should be
performed in a hierarchical manner in the context of FR-
SIQM. This is justified by the fact that the structure of
human brain is inherently hierarchical so that our de-
signed quality metric should well resemble this property.

II. RELATED WORKS
A. Existing FR-SIQOM Algorithms

In the past decades, many FR-SIQM algorithms have been
proposed. Some pioneering FR-SIQM metrics [13,14,22,23]
tried to assess a distorted stereopair by extending the tradi-
tional 2D FR-SIQM metrics with further considering the depth

information. However, estimating the depth information from a
certain stereopair is difficult and time-consuming. In addition,
whether evaluating the depth information using 2D-IQM met-
rics is suitable for SIQM still remains an open problem. Unlike
these pioneering methods, the recent studies have found that
the performance of FR-SIQM models is largely beneficial from
the simulation of binocular visual characteristics. Bensalma
and Larabi [56] proposed a binocular energy-based quality
metric (BEQM) by computing the binocular energy difference
between the original and distorted stereopairs. It simulates
the critical binocular fusion process that characterizes the
human stereopsis perception. Lin and Wu [57] simulated the
binocular frequency integration behaviors and utilized them as
the bases for binocular combination when adapting the existing
2D-IQM metrics to evaluate stereoscopic images. Chen et
al. [58] proposed to synthesize a cyclopean image for FR-
SIQM from the stereopair and its corresponding disparity
map to characterize the underlying binocular rivalry caused
by asymmetrical distortions. Then, by applying traditional 2D
FR-IQM quality metrics on this synthesized cyclopean image,
a final 3D quality score was obtained. Zhang and Chandler
[30] extended the traditional 2D-most apparent distortion (2D-
MAD) method [10] to a 3D-MAD measure which decomposed
the problem of FR-SIQM into two sub-modules: 1) distortion
of the monocular views and 2) distortion of the cyclopean
view. Wang et al. [52] devised a binocular rivalry-inspired
multi-scale model for binocular combination which partic-
ularly focuses on the quality evaluation of asymmetrically
distorted stereopairs. This method is developed based on the
hypothesize that the strength of view dominance in binocular
rivalry is related to the relative energy of the two views.
Lin et al. [59] proposed a FR-SIQM method by estimating
the cyclopean amplitude map and the cyclopean phase map
based on low-level features and binocular fusion. In addition,
visual saliency detection results are also used to modulate
the amplitude component for subsequent cyclopean amplitude
map generation. Khan and Channappayya [60] estimates the
quality of stereopairs by extracting depth-salient edges to
refine the local quality maps of both monocular images for
spatial pooling. Ma et al. [61] first applied the existing FR 2D-
IQM algorithms on each view of the reference and distorted
stereopairs, and then combined the monocular quality scores
via a linear weighting method to obtain the binocular quality
score. Zhou et al. [62] proposed an SIQM metric based on
sparse representation and binocular combination. Both sparse
coefficients and gradient magnitude are used for monocular
view quality measurement. Then, both first-order and second-
order binocular combination strategies are adopted to fuse the
monocular view quality scores.

B. Problem Statement

Given a distorted stereoscopic image {IP, 15} and its cor-
responding original version {I¢, I} as reference, the target
of FR-SIQM is to evaluate the visual quality of {IP 5}
in a perceptually consistent manner based on some extracted
features from the distorted and original stereoscopic images.
Once the features are extracted, MQE and BQF can be
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performed. We categorize the existing FR-SIQM methods into
two classes according to the execution sequence of MQE and
BQF:

Early combination-based: The methods belonging to this
category first perform binocular combination to generate a
merged view called cyclopean image from the given left and
right view images and then perform MQE on this cyclopean
image to obtain the final quality score [30,58,59,61,62]. This
framework can be described as follows:

Q =M(C(F(ID),F(IR)), C(F(IL), FIR)), ()

where F, C, and M denote the feature extractor, the cyclopean
image generation operator, and the MQE operator, respec-
tively. The existing methods belonging to this category are
different with each other in terms of either all or part of these
three operators. Different with those later combination-based
SIQM methods, these early combination-based SIQM methods
usually relies on the disparity map to link the left and right
view images for cyclopean image generation. However, reli-
able and efficient disparity estimation is still an open problem
especially for the distorted stimuli, making such frameworks
problematic and not applicable to real-time applications.

Later combination-based: The methods belonging to this
category first perform MQE of the left and right view im-
ages separately and then perform BQF to combine the two
monocular quality scores into a single one [28,52-57,60]. This
framework can be described as follows:

Q =BM(F(IY),FUL)), M(F(IR),F(IR)), (@)

where F, M, and B denote the feature extractor, the MQE oper-
ator, and the BQF operator, respectively. The existing methods
belonging to this category are different with each other in
terms of either all or part of these three operators. Overall,
the design of feature extractor I should be quality-aware and
characterizable of the quality perception mechanisms of the
HVS, the design of the MQE metric M should be able to well
reflect the perceptual quality difference between the distorted
and original inputs in the considered feature domain, and the
design of the BQF metric B should well characterize the
binocular visual properties of the HVS.

For the sake of efficiency, our proposed method follows the
later combination-based pipeline. To be specific, we make use
of the pre-trained deep CNN as the feature extractor to extract
deep hierarchical features which are used as the basis for the
subsequent MQE and BQF operations. The technical details
will be illustrated in the following section.

III. HIERARCHICAL DEEP FEATURE-BASED SIQM
A. Overview

The framework of our proposed method is shown in Fig.
1. Firstly, distorted and reference stereoscopic images are
separately fed into a pre-trained deep CNN for hierarchical
deep feature extraction. Note that, a set of filters can be
used in each layer. Usually, one filter corresponds to one
specific channel. Thus, a set of channel-wise feature maps are
generated in each layer. For simplicity, we first aggregate these
channel-wise feature maps into a single layer-wise feature map
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Fig. 1. The framework of the proposed hierarchical deep feature-based FR-
SIQM method.
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Fig. 2. The VGG-16 network architecture. It contains a total number
of 16 convolutional (Conv) and fully connected (FC) layers. Some of the
Conv layers are followed by max-pooling layers (Mpool). All the Conv
and FC layers are equipped with the rectification (ReLU) non-linearity. For
conciseness, we directly merge the ReLU layers with the Conv and FC layers
together in the figure. The final layer is the soft-max layer (Sftm).

with average pooling. Then, these layer wise feature maps are
used for the subsequent MQE and BQF stages. To be specific,
the MQE stage estimates a set of layer-wise monocular quality
scores with a similarity metric performed on the layer-wise
feature maps of the distorted monocular view and those of
the reference monocular view. The BQF stage estimates a set
of layer-wise binocular quality scores via a weighted average
of the corresponding layer-wise monocular quality scores. The
weights are determined based on a hierarchical feature energy-
based Gain-Control model. Finally, the layer-wise binocular
quality scores across all layers are fused into an overall quality
socre via regression.

B. Hierarchical Deep Feature Representation

1) Feature extractor: We use the VGG network [41] as
the feature extractor. While there are now CNN models that
outperform VGG, VGG remains appealing due to its relatively
simple architecture and competitive performance [42]. Among
several VGG network variants, the widely used VGG-16 is
adopted. The architecture of VGG-16 is depicted in Fig. 2. In
VGG-16, an input image is first resized into 224 x224 and then
passed through a stack of convolution layers (Conv), where the
filters are with a constant size of 3x3. The number of filters
in Conv layers starts from 64 to 512. The max-pooling layers
(Mpool) are attached to some of the Conv layers. Max-pooling
operation is performed over a 2x2 pixel window with a stride
of 2. Finally, the output of the stacked Conv and Mpool layers
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TABLE I
THE DETAILED CONFIGURATION INFORMATION REGARDING THE VGG-16 NETWORK.

Layer n 1 2 3 4 5 6 7 8
Type Conv ReLU Conv ReLU Mpool Conv ReLU Conv
Filter size 3x3 Ix1 3x3 1x1 2x2 3x3 Ix1 3x3
Channel number | 64 64 64 64 64 128 128 128
Input size 224x224%3 224 %224 x 64 224x224x64  224x224x64  224x224x64  112x112x64 112x112x128 112x112x128
Output size 224 %224 x 64 224 %224 x 64 224x224x64 224 x224x64 112x112x64 112x112x128 112x112x128 112x112x128
Layer n 9 10 11 12 13 14 15 16
Type ReLU Mpool Conv ReLU Conv ReLU Conv ReLU
Filter size Ix1 2x2 3x3 Ix1 3x3 Ix1 3x3 Ix1
Channel number | 128 128 256 256 256 256 256 256
Input size 112x112x 128 112x112x128  56x56x128 56x56x256 56x56x256 56x56x256 56X 56%256 56x56x%256
Output size 112x112x 128  56X56x 128 5656 %256 56X 56%256 56X 56%256 56X 56%256 56X 56X%256 56X 56%256
Layer n 17 18 19 20 21 22 23 24
Type Mpool Conv ReLU Conv ReLU Conv ReLU Mpool
Filter size 2x2 3x3 Ix1 3x3 Ix1 3x3 I1x1 2x2
Channel number | 256 512 512 512 512 512 512 512
Input size 56X 56%256 28x28x256 28x28x512 28x28x512 28x28x512 28x28x512 28x28x512 28x28x512
Output size 28x28x256 28x28x512 28x28x512 28x28x 512 28x28x 512 28x28x 512 28x28x512 14x14x512
Layer n 25 26 27 28 29 30 31 32
Type Conv ReLU Conv ReLU Conv ReLU Mpool FC
Filter size 3x3 Ix1 3x3 Ix1 3x3 Ix1 2x2 Ix1
Channel number | 512 512 512 512 512 512 512 4096
Input size 14x14x512 14x14x512 14x14x512 14x14x512 14x14x512 14x14x512 14x14x512 TxTx512
Output size 14x14x512 14x14x512 14x14x512 14x14x512 14x14x512 14x14x512 TXTx512 1x1x4096
Layer n 33 34 35 36 37
Type ReLU FC ReLU FC Sftm
Filter size 1x1 Ix1 1x1 1x1 Ix1
Channel number | 4096 4096 4096 1000 1000
Input size 1x1x4096 1 x1x4096 1x1x4096 1x1x4096 1x1x1000
Output size 1x1x4096 1x1x4096 1x1x4096 1x1x1000 1x1x1000

TABLE II

is followed by three fully connected layers (FC): the first two
FC layers have 4096 channels each, the third one contains
1000 channels. The final layer is the soft-max layer (Sftm) for
classification. In addition, all Conv and FC layers are equipped
with the Rectified Linear Unit layers (ReLU). We summarize
the detailed configuration information in Table I to present the
input and output of each layer and other key information. In
the following, we briefly introduce the formulations of these
layers.

Conv layer: A Conv layer is defined on a translation
invariance basis and shared weights across different spatial
locations. The input and output of each Conv layer are three-
dimensional tensors, called feature maps. If we denote the
input feature maps of a Conv layer n as F,,_1, where n €

{1,2,---, N}, the output feature maps of this Conv layer can
be computed by:
Fgmw — Fn—l % Wgonv + bgonv7 (3)

where the symbol * denotes the 2-D convolution operation,
WEonv s the set of filter weights in this Conv layer, and
b&omv is the set of bias values added to the corresponding
convolutional responses.

Mpool layer: Next, a Mpool layer is followed to ag-
gregate the features over local non-overlapping windows at
each location per feature map. If we denote the local pooling
window at location p as €2, and the input feature maps of a
Mpool layer n as F,,_1, where n € {1,2,--- , N}, the output
feature maps of the Mpool layer n can be computed by:

F)'P = maxgeq, (Frno1,q)- 4)

FC layer: When several Conv layers and Mpool layers
are stacked alternately in depth, hierarchical features with in-
creasing receptive fields can be obtained. Finally, the extracted

IMPORTANT NOTATIONS AND DEFINITIONS.

Notations Definitions
N Total number of layers in the VGG network
br The left view image of a stereoscopic image pair
I The right view image of a stereoscopic image pair
FSkL The k-th feature map in the n-th layer of the original left image
FS’kL The k-th feature map in the n-th layer of the distorted left image
F;)kR The k-th feature map in the n-th layer of the original right image
Ff‘lf The k-th feature map in the n-th layer of the distorted right image
Sk The similarity map in the n-th layer of the left-view image
e similarity map in the n-th layer of the right-view image

Sf The similarity map in the n-th layer of the right-view imag
Qﬁ The quality score in the n-th layer of the left-view image
Qf? The quality score in the n-th layer of the right-view image
g e left-view weights in the n-th layer

L The left-vi ights in the n-th 1
gf The right-view weights in the n-th layer
Qn The fused binocular quality score in the n-th layer

feature maps are aggregated into a 1-D global feature vector
via FC layer. If we denote the input features (or feature maps)
of an FC layer n as F,_1, where n € {1,2,--- | N}, the
output feature vector of the FC layer n can be computed by:

FIC=F, | WEC L pl'C (5)

ReLU layer: The ReLU layer is defined to restrict all
the negative values of the input to zero while preserving the
positive values. If we denote the input feature maps of a ReLU
layer n as F,,_1, where n € {1,2,--- , N}, the output feature
maps of this ReLU layer can be computed by:

FELU — max(0,F,,_1). (6)

2) Hierarchical feature representation: Feeding an image
into the pre-trained VGG network on ImageNet, hierarchical
feature maps with increasing receptive fields are generated.
For the task of SIQM, each view of the distorted and original
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stereopairs is first resized to 224x224x3 followed by mean
value subtraction in each channel, and then fed into VGG
separately to extract the corresponding hierarchical feature
maps. The number of feature maps in each layer equals to
the relevant number of filters/channels defined in the network.
In our method, we only extract deep feature maps from the
former 31 layers and discard the last six FC+ReLU and
Sftm layers which actually produce global feature vectors
instead of local feature maps. The default input image size
in the standard VGG-16 network is 224x224x3 and VGG-
16 can only receive such an input image size due to the
existence of the FC layers. Although we have removed the
FC layers from the standard VGG-16 network architecture for
local feature extraction, it is more reasonable to still use the
default input image size because the pre-trained VGG-16 on
ImageNet is directly used without any re-training process in
our implementation. That is, the parameters are optimized for
the standard VGG-16 architecture and all these parameters are
optimal only when using the default input image size.

Before describing the technical details, we first summarize
some important notations and their definitions in Table II.
Given a distorted stereoscopic image {I7-* IP-F} and its
relevant original version {79-X 198} we denote the k-th fea-
ture map in the n-th layer of the distorted left-view image I
as Fo" with k = {1,2,-- ,K,} and n = {1,2,--- N},
respectively. Similarly, we have Fi’kR for the distorted right-
view image [ D.R ngL
left-view image I9L and original right-view image
respectively. To facilitate analysis, the feature maps in different
layers are shown in Fig. 3. One can see that the feature
maps in lower layer (e.g., (c) and (f)) highlight the low-
level visual features and image micro-structures while the
feature map in higher layer (e.g., (e) and (h)) tend to reflect
the high-level semantic features and image macro-structures.
Since distortion will have impact on both micro- and macro-
structures of an image, using the extracted hierarchical deep
feature representations for quality degradation evaluation of
stereoscopic images is deemed reasonable.

and FS’,? for the relevant original
’ IO’R

C. Monocular Quality Estimation

Based on the built hierarchical deep feature representations,
monocular quality estimation can be performed. Taking the
left-view as an example, monocular quality estimation is per-
formed by measuring the similarity between F2+X and ngL
which represent the averaged feature map of the distorted
and original left view images in each layer, respectively.
In the proposed method, instead of directly comparing the
feature maps, we perform the similarity measurement in the
corresponding gradient domain. The rationale is that the HVS
is highly adapted for extracting structural information from
scenes and therefore the similarity metric should be capable
of reflecting the structural degradation between the distorted
and original feature maps. Gradient magnitude, defined as the
root mean square of image directional gradients along the
horizontal and vertical directions, is known as a simple yet
effective local structure descriptor of images. The similarity
metric performed on the gradient magnitude maps of the

Fig. 3. The feature maps in different layers. (a) Original left-view image,
(b) Distorted left-view image with JPEG2000 compression, (c)-(e) are respec-
tively the 1-st channel feature maps in the 1-st, 15-th, and 30-th layers of (a),
(f)-(h) are respectively the 1-st channel feature maps in the 1-st, 15-th, and
30-th layers of (b). Note that, all the feature maps are resized to 224 x224
for visualization.

hierarchical feature maps is considered to be more in line with
human perception. In addition, previous works on 2D-IQM
have also verified the efficiency and effectiveness of gradient
magnitude.

Mathematically, the gradient magnitudes of F2-L and FO-F
at location i, denoted by GMZY(7) and GMYX(4), are
calculated as follows:

GMS’L@:\/( DL Gp)2(i) + (FEF « G,)2(), (7)

GM;) " (i) = J (FOE 5 GR)2(0) + (FOF % G,)2(0), (8)

where the symbol * denotes the 2-D convolution operation,
G and G, denotes the Prewitt filters along horizontal and
vertical directions, respectively, and are defined as follows:

1/3 0 —1/3
G,=| 1/3 0 —1/3 |, 9)
1/3 0 —1/3
1/3 1/3 1/3
G, = 0 0 0 (10)
~1/3  -1/3  -1/3

Then, we measure the similarity between GMZ* and
GM,? "L at location i as follows:
2GMY" (i) GMSF (i
Sh() = ——oa WEMLTW £e )
[GM ()] + [GM, 7 (9)]? + ¢
where c is a small positive constant that prevents the occur-
rence of numerical instability. In the proposed method, we set
¢=0.01 empirically.
With the obtained gradient magnitude similarity map S% in
hand and with the inspiration that the global variation of image
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local quality degradation can reflect the overall quality, the
final monocular quality score for the left-view is computed via
a simple standard deviation-based pooling scheme as follows:

—SK)?, 12)
where H and W are the height and width of the image, ST
denotes the mean value of SL. Similarly, we can compute the
final monocular quality score for the right-view, denoted by
Q. Since the above described monocular quality estimation is
carried out in a layer-wise manner, the estimated Q% and QF
are called layer-wise monocular quality scores in this paper.

D. Binocular Quality Fusion

Based on the obtained layer-wise monocular quality scores

5 and QFF ., binocular quality fusion targets at combining
the corresponding layer-wise monocular quality scores into
layer-wise binocular quality scores in a manner that is consis-
tent with the binocular combination mechanisms of the HVS.
In the literature, there have been several biological models,
such as eye-weighting model [43], quadratic summation model
[44], vector summation model [45], neural network model
[46], and gain-control theory model [47], proposed to simulate
the critical binocular combination behavior. Among them, the
latest gain-control theory model simulates an early stage of
binocular combination and explains both Fechner’s paradox
[48] and cyclopean perception well [47]. In general, the gain-
control theory model is expressed as follows:

L R 1+ E- L 14+ ER R
J(I717) = (w)l + <1+E+ER>I :
(13)
where EX and E denote the cumulative sums of energy over
layers of the left-view and right-view images, respectively.
As described, the distorted left-view image I”-" and right-
view image I”:f can respectively be represented by the VGG
model as

FIPP) = (FP5) = (B2 B0 FRP) 0 (14)
F(IPR) = (FDRYy = (FDF FDE . FRRY (15)

where n is the index of layer.
Based on the above hierarchical feature representations, we
further compute the energies of a certain layer as follows:

E®EDL) =Y [FYH(p), (16)
EF)R) =Y [F2 )P, a7

where p denotes the pixel intensity value. Besides, the total
energies over all layers are computed as follows:

N
EF") = ZE(FD’L) (18)

N
FD R Z FD R (19)

where [V is the number of layers.
Finally, we derive the gain g,, for each layer based on the
Gain-Control theory model expressed in Eq. (13):

L 1+ E(F;")

In =1+ E(FDL) + E(FDR) (20)
D,R
gf = LI @
1+ E(FP:L') + E(FP.R)

In the above equations, the rationality of using total energies
over all layers (instead of a certain layer) in the denominator
is illustrated as follows. In the original gain control model,
the gain value of the left view is defined as the ratio between
(1+E*) and (1+ E* + EF) where EL and EF are the sums
of energy over all spatial frequency band components (can be
obtained by Difference-of-Gaussian decomposition) of the left
and the right views, respectively. If we consider each specific
layer in our method as multiple spatial frequency bands, an
intuitive consideration is that the gain value of a certain layer
should not only accounts for the dominance of each view
relative to the other one in this layer but also accounts for
the importance of this layer among all layers.

Finally, according to the Gain-Control theory model given in
Eq. (13), the layer-wise binocular quality score can be derived
as follows:

Qn = 97 Qr + 9, Qn
where Q% and QF denote the layer-wise monocular quality
scores of the left and right views, respectively.

(22)

E. Hierarchical Layer Fusion

With the layer-wise binocular quality scores in hand, it is
necessary to fuse them into a single quality scalar. In our
proposed method, we resort to support vector regression (SVR)
[49] to learn the mapping from layer-wise binocular quality
scores to final binocular quality scores. Considering a set of
training data {(Q1,51),---,(Qu, S1)}, where Q; € RY is
the estimated layer-wise binocular quality scores and .S; is the
corresponding subjective opinion quality score (e.g., DMOS).
Given parameters C' > 0 and € > 0, the standard form of SVR
is expressed as [49]:

} (23)

mlnwbgg* %w W‘FC{Zgz‘i’z&

=1 =
subject to w? G(Q;) +b—S; < e+ & 24
Si—w'(Qi) —b<e+&" (25)
§L7£1*20a2217277l (26)

where K(Q;,Q;) = ¢(Qi)T¢(Q,) is the kernel function.
We resort to the LIBSVM package [50] to implement SVR
with the radial basis function kernel. Once the SVR model
SVR_TRAIN is built, it can be used for quality predic-
tion of an arbitrary distorted stereoscopic image with its

corresponding layer-wise binocular quality scores as input:
@@ = SVR_TRAIN(Q;).
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TABLE III

KEY INFORMATION OF THE USED BENCHMARK DATABASES.

TABLE IV
OVERALL PERFORMANCE COMPARISON ON LIVE 3D PHASE-I AND
PHASE-II DATABASES. RESULTS OF THE BEST-PERFORMING SIQM
METHOD ARE BOLDED.

Database LIVE- [28] | LIVE [51] | WIVC-I [52]
# of Reference Image 20 8 10
# of Distortion Type 3 35 3 Methods LIVE 3D Phase-1 LIVE 3D Phase-1I
# of Distortion Level : 9 : ST ¥ 0% S0 ORoL 07 ST
# of Distorted Image 365 360 460 MS-SSIM [8] 0926 | 0922 | 6193 | 0778 | 0772 | 7.096
D.lStO.l”thH Pattern Sym. Sym./Asym. Sym./Asym. VIF [9] 0.925 0.920 6.228 0.840 0.817 6.132
Subjective Score Type DMOS DMOS DMOS MAD [10] 0942 | 0939 | 5498 | 0.854 | 0.842 | 5.869
DeepSIM [40] 0.945 | 0940 | 5476 | 0.859 | 0.848 | 5.694
Benoit's [14] 0915 | 0911 | 6633 | 0812 | 0.806 | 6.582
You’s [15] 0.895 | 0.896 | 7.312 | 0729 | 0681 | 7.727
Wang’s [54] 0.888 | 0.890 | 7.536 | 0.817 | 0.805 | 6502
IV. EXPERIMENTAL RESULTS Ko’s [55] 0910 | 0907 | 6804 | 0760 | 0756 | 7.341
. Bensalma’s [56] | 0.887 | 0.875 | 7.559 | 0.770 | 0751 | 7.204
A. Experimental Setups Lin&Wu's [S7] | 0.864 | 0.856 | 8242 | 0.658 | 0.638 | 8.496
. Chen’s [58] 0917 | 0916 | 6550 | 0906 | 0901 | 4.767
1) Benchmark database: Three benchmark databases in- Shao’s [29] 0932 | 0927 | 5941 | 0836 | 0819 | 6.196
: : : Zhang’s [30] 0951 | 0944 | 5052 | 0927 | 0924 | 4220
cluding Laboratory of Image and Video Evaluation (LIVE) P 0037 | 0931 | 35742 | o1 | osoa | a6ss
3D-IQA Phase-1 database [28], LIVE 3D-IQA Phase-II Khan’s [60] 0.927 | 0916 - 0.932 | 0922 -
i _ Ma’s [61] 0951 | 0949 | 5074 | 0911 | 0905 | 4.652
database [51],'and WaterlQO IVC 3D-IQM Phase-II database Zhou's [62] 0939 | 0926 | 2535 | o2 | 086 | 4667
[52] are used in the experiments. Proposed 0960 | 0953 | 4455 | 0932 | 0927 | 4.041

The LIVE 3D-IQA Phase-I database consists of 20 reference
and 365 distorted stereoscopic images with human subjective
rating scores in the form of difference mean opinion score
(DMOS). Five types of distortions, including additive Gaussian
White Noise (WN), Gaussian Blur (GBLUR), JPEG Com-
pression (JPEG), JPEG2000 Compression (JP2K), and Fast
Fading (FF) Channel Distortion, are simulated. Meanwhile,
all distortions are symmetrically applied. The LIVE 3D-IQA
Phase-II database consists of 8 reference and 360 distorted
stereoscopic images with their DMOSs. The same five dis-
tortion types as in LIVE Phase-I database are considered.
For each distortion type, each reference stereoscopic image
was degraded to generate 3 symmetrically distorted and 6
asymmetrically distorted stereoscopic images. The Waterloo
IVC 3D-IQA Phase-II database consists of 10 reference and
460 distorted stereoscopic images with DMOSs. Each single-
view reference image was either symmetrically or asymmet-
rically processed by three types of distortions, i.e., additive
white Gaussian noise contamination (WN), Gaussian blur
(GBLUR), and JPEG compression (JPEG). Each distortion
type has four distortion levels. Some key information regarding
these databases are summarized in Table II.

2) Performance criteria: Four performance criteria includ-
ing the Spearman rank correlation coefficient (SRCC), the
Pearson linear correlation coefficient (PLCC), the Kendall rank
correlation coefficient (KRCC), and the Root Mean Square
Error (RMSE) between the predicted scores and DMOSs, are
used. A better SIQM approach should have higher SRCC,
PLCC, and KRCC values (with a maximum of 1) while lower
RMSE values (with a minimum of 0). As a common strategy,
before calculating the PLCC and RMSE, the following logistic
regression function suggested in [53] is implemented:

}_ 1
2 1+6Xp(>\2(Q—)\3))

where () is the model predicted score as input and (), is the
output, and Aq, Ao, Az, A4, and A5 are the parameters to be
fitted. A set of model predicted scores and the corresponding
DMOSs are used to determine these parameters by using the
nlinfit function in MATLAB.

Qp =M +MQ+ A5, (27)

3) Evaluation protocol: Since the proposed method re-
quires learning a regression model using SVR to estimate
the final quality score, it is required to construct a training
set for SVR model training. For performance evaluation on
each database, the entire database is divided into two non-
overlapping subsets, i.e., training subset and testing subset,
according to the content of original stereoscopic images. To
be specific, for each individual database, distorted stereoscopic
images associated with 80% original contents constitute the
training subset while the remaining distorted stereoscopic
images associated with 20% original contents are considered
as the testing subset. To ensure the results are not biased to
specific train-test splits, such random split process is randomly
repeated 100 times to calculate the median prediction results
as the final performance.

B. Performance Evaluation

1) Evaluation on LIVE 3D Phase-I and Phase-II databases:
The performance evaluation is first conducted on LIVE 3D
Phase-I and Phase-II databases. We compare the performance
of the proposed method against that of several mainstream FR
2D-1QM and FR-SIQM methods. The competing FR 2D-IQM
methods include SSIM [7], MS-SSIM [8], VIF [9], MAD [10],
and DeepSIM [40]. For these FR 2D-IQM approaches, the
predicted quality of a certain stereopair is directly taken to be
the averaged quality estimated from the both monocular views
without considering any binocular fusion mechanism. The
competing FR-SIQM methods include Benoit’s method [14],
You’s method [15], Wang’s method [54], Ko’s method [55],
Bensalma’s method [56], Lin & Wu’s method [57], Chen’s
method [58], Shao’s method [29], Zhang’s method [30], Lin’s
method [59], Khan’s method [60], Ma’s method [61], and
Zhou’s method [62]. We present the SRCC, PLCC and RMSE
results of these methods on the entire LIVE 3D Phase-I and
Phase-II databases in Table IV where the indicators providing
the best performances are bolded.

From this table, we have the following observations. First,
the proposed method performs better than all the competing
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Fig. 4. The scatter plots of the proposed method on LIVE 3D Phase-I, LIVE 3D Phase-1I, and WIVC 3D Phase-II databases, respectively.
TABLE V

PLCC VALUES ON DIFFERENT TYPES OF DISTORTIONS ON THE LIVE 3D PHASE-I AND PHASE-II DATABASES. RESULTS OF THE BEST-PERFORMING
SIQM METHODS ON EACH DISTORTION TYPE ARE BOLDED.

Methods LIVE 3D Phase-I LIVE 3D Phase-II
JP2K | JPEG WN GBLUR FF JP2K | JPEG WN GBLUR FF

SSIM [7] 0.859 | 0.480 | 0.893 0911 0.689 | 0.697 | 0.645 | 0.925 0.828 0.856
MS-SSIM [8] 0.916 | 0.622 | 0.929 0.936 0.803 | 0.833 | 0.814 | 0.941 0.688 0.841
VIF [9] 0.936 | 0.633 | 0.930 0.941 0.858 | 0.808 | 0.782 | 0.821 0.983 0.940
MAD [10] 0.951 | 0.762 | 0.935 0.961 0.842 | 0.873 | 0.858 | 0.887 0.939 0.920
DeepSIM [40] 0.950 | 0.774 | 0.935 0.952 0.860 | 0.881 | 0.863 | 0.892 0.938 0.937
Benoit’s [14] 0.914 | 0.607 | 0.907 0.924 0.782 | 0.853 | 0.821 | 0.933 0.747 0.867
You’s [15] 0.921 | 0.602 | 0.908 0.899 0.730 | 0.776 | 0.776 | 0.877 0.576 0.788
Wang’s [54] 0.870 | 0.482 | 0.875 0.934 0.764 | 0.731 | 0.662 | 0.938 0.878 0.879
Ko’s [55] 0.910 | 0.529 | 0.885 0.953 0.828 | 0.904 | 0.707 | 0.899 0.714 0.824

Bensalma’s [56] | 0.839 | 0.380 | 0.915 0.937 0.734 | 0.667 | 0.858 | 0.944 0.908 0.910
Lin&Wu’s [57] 0.865 | 0.477 | 0.937 0.918 0.720 | 0.722 | 0.642 | 0.927 0.842 0.856

Chen’s [58] 0912 | 0.590 | 0.926 0.935 0.747 | 0.839 | 0.831 | 0.957 0.962 0.907
Shao’s [29] 0.921 | 0.629 | 0.929 0.942 0.843 | 0.793 | 0.759 | 0.811 0.957 0.936
Zhang’s [30] 0.955 | 0.732 | 0.952 0.959 0.881 | 0.886 | 0.889 | 0.957 0.984 0.932
Lin’s [59] 0.952 | 0.755 | 0.927 0.958 0.862 - - - - -

Khan’s [60] 0.951 | 0.711 | 0.947 0.959 0.858 | 0.927 | 0.893 | 0.970 0.978 0.899
Ma’s [61] 0.950 | 0.768 | 0.952 0.963 0.872 | 0.887 | 0.899 | 0.957 0.978 0.901
Proposed 0.953 | 0.799 | 0.963 0.952 0.887 | 0.936 | 0.900 | 0.971 0.983 0.950

TABLE VI

SRCC VALUES ON DIFFERENT TYPES OF DISTORTIONS ON THE LIVE 3D PHASE-I AND PHASE-II DATABASES. RESULTS OF THE BEST-PERFORMING
SIQM METHODS ON EACH DISTORTION TYPE ARE BOLDED.

Methods LIVE 3D Phase-I LIVE 3D Phase-II
JP2K | JPEG | WN | GBLUR FF JP2K | JPEG | WN | GBLUR FF

SSIM [7] 0.857 | 0.436 | 0.938 0.879 0.586 | 0.703 | 0.679 | 0.920 0.836 0.835
MS-SSIM [8] 0.898 | 0.599 | 0.942 0.928 0.735 | 0.817 | 0.827 | 0.947 0.801 0.830
VIF [9] 0.902 | 0.582 | 0.932 0.931 0.804 | 0.826 | 0.778 | 0.820 0.950 0.934
MAD [10] 0.925 | 0.736 | 0.950 0.954 0.772 | 0.869 | 0.839 | 0.885 0.924 0.918
DeepSIM [40] 0.923 | 0.747 | 0.948 0.945 0.785 | 0.873 | 0.841 | 0.891 0.922 0.920
Benoit’s [14] 0.887 | 0.565 | 0.939 0.911 0.683 | 0.842 | 0.839 | 0.926 0.766 0.862
You’s [15] 0.884 | 0.547 | 0.929 0.910 0.629 | 0.834 | 0.755 | 0.878 0.275 0.740
Wang’s [54] 0.870 | 0.445 | 0.939 0.918 0.654 | 0.727 | 0.694 | 0.934 0.882 0.865
Ko’s [55] 0.891 | 0.527 | 0.933 0.941 0.756 | 0.902 | 0.728 | 0.900 0.836 0.811

Bensalma’s [56] | 0.817 | 0.328 | 0.906 0916 0.650 | 0.804 | 0.846 | 0.939 0.884 0.874
Lin&Wu’s [57] 0.839 | 0.207 | 0.928 0.935 0.658 | 0.719 | 0.613 | 0.907 0.711 0.701

Chen’s [58] 0.896 | 0.558 | 0.948 0.926 0.688 | 0.833 | 0.840 | 0.955 0.910 0.889
Shao’s [29] 0.883 | 0.599 | 0.930 0.910 0.793 | 0.788 | 0.745 | 0.807 0.939 0.935
Zhang’s [30] 0.916 | 0.700 | 0.950 0.942 0.833 | 0.895 | 0.866 | 0.952 0.942 0.922
Lin’s [59] 0913 | 0.716 | 0.929 0.933 0.829 - - - - -

Khan’s [60] 0.907 | 0.606 | 0.938 0.930 0.809 | 0913 | 0.867 | 0.958 0.885 0.865
Ma’s [61] 0.924 | 0.736 | 0.952 0.945 0.826 | 0.878 | 0.879 | 0.949 0.906 0.893
Zhou’s [62] 0.906 | 0.693 | 0.941 0.917 0.744 | 0.872 | 0.849 | 0.946 0911 0.905
Proposed 0.895 | 0.702 | 0.939 0.948 0.839 | 0.939 | 0.865 | 0.943 0.946 0.936

metrics on both databases by a large margin except for the more or less take into account either the disparity information
PLCC value of Khans method on LIVE 3D Phase-II is on or binocular visual properties, they are not always better than
a par with our method. Second, although the SIQM methods the 2D-extended IQM methods. The reasons are explained
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as follows. For Benoit’s [14] and You’s [15] methods, their
performances heavily depend on the accuracy of the used stere-
o matching algorithms for disparity estimation. Meanwhile,
directly using 2D-IQM metrics to evaluate disparity maps may
not be necessarily perceptually interpretable. Although Shao’s
[29], Wang’s [54], Ko’s [55], and Lin & Wu’s [57] methods
are designed by taking into account binocular combination,
their methods are still based on linear weighting two quality
scores from simple FR 2D-IQM methods on both monocular
views. Bensalma’s [56] method performs the worst among
all the FR-SIQM methods on LIVE Phase-I and also not
so well on LIVE Phase-I. This indicates that the accurate
calculation of binocular energy still has a long way to go
for achieving a satisfactory performance in the application
of FR-SIQM. Zhang’s [30], Chen’s [58], Lin’s [59], Ma’s
[61], Zhou’s [62] methods measure the quality of stereoscopic
images based on the synthesized cyclopean image by modeling
the binocular rivalry mechanism. Therefore, these methods are
more consistent with stereopsis and perform much better on
LIVE 3D Phase-II which contains both symmetric and asym-
metric distortions. This is expectable because stereopairs with
asymmetrical distortions are more likely to cause binocular
rivalry which is well characterized by the synthesized cyclo-
pean image. Khan and Channappayya’s method [60] estimates
the quality of stereopairs by extracting depth-salient edges to
refine the quality maps associated with the gradient features
of both monocular images. This method achieves fairly good
performance due to the consideration of salient edges (middle-
level features) that contribute to depth perception. However,
only low-level and middle-level features, i.e., inter-gradient
and saliency maps, are taken into account for monocular
quality estimation, ignoring the contribution of high-level
semantic features. Moreover, a simple multiplication operator
used for binocular fusion cannot well characterize the complex
binocular interaction mechanism.

We further draw the scatter plots of the proposed method on
each database by using the standard leave-one-out evaluation
strategy, as shown in Fig. 4(a), (b). The vertical axis denotes
the DMOSs and the horizontal axis denotes the predicted
scores. A better convergence of the points to the fitted curve in
the scatter plots means a better consistency with the DMOSs.
As one can see, our method can achieve high consistency with
human subjective perception.

In spite of the prominent performance on the entire
database, it is also necessary to know the capacity of the pro-
posed method for evaluating each individual distortion type.
Therefore, we also report the performance results on subsets
of the LIVE 3D Phase-I and Phase-II databases corresponding
to each individual distortion type. Test results are shown in
Table V and Table VI in terms of PLCC and SRCC, respec-
tively. Results of the best-performing SIQM methods on each
distortion type are bolded in the table. Since RMSE generally
have the opposite tendency with PLCC and SRCC, we do not
report them here for brevity. Note that the PLCC values of
Zhou’s method [62] on each individual distortion type (Table
V) are not reported because these results are not reported in
the corresponding paper. As shown in Table V and Table VI,
we observe that our proposed method delivers the best results

on the majority of all distortion types among all competitors,
i.e., it delivers the best results for 12 times, followed by Ma’s
method [61] for only 5 times. In particular, our method can
evaluate the GBLUR and FF distortion type quite well (refer
to the SRCC values shown in Table VI) because these two
types of distortions usually destroy the semantic information
of image contents. Fortunately, our proposed method can
well characterize both low-level visual feature and high-level
semantic information degradations by applying a hierarchical
deep feature degradation fusion strategy for SIQM.

2) Evaluation on WIVC Phase-1I databases: We also evalu-
ate the proposed method on the WIVC 3D Phase-II database.
The competing methods include two classical FR 2D-IQM
metrics, i.e., PSNR and SSIM [7], and several mainstream
FR-SIQM metrics, i.e., Benoit’s method [14], You’s method
[15], Yang’s method [26], Chen’s method [58], and Wang’s
method [52]. Similar to the evaluation protocol on LIVE,
for the FR 2D-IQM approaches, the predicted quality of a
certain stereopair is directly taken to be the average value
of the quality scores estimated from the two views. The
PLCC, SRCC, and KRCC results of the proposed method
and that of other competing methods on the entire WIVC
3D Phase-II database are presented in Table VII where the
indicators providing the best performances are highlighted
with boldface. It can be seen that a simple average of FR
2D-IQM scores of both monocular views cannot accurately
predict the quality of stereoscopic images contained in WIVC
3D Phase-II which is constructed mainly for SIQM with asym-
metric distortions (although both symmetric and asymmetric
distortions are involved, asymmetric distortions occupies the
great majority). While those competing FR-SIQM methods are
somewhat better than the extended FR 2D-IQM methods, most
of them are still far from satisfactory. Among the competing
FR-SIQM methods, the latest method proposed by Wang et
al. [52] delivers the best performance. However, our proposed
method is still superior to this state-of-the-art method in terms
of all the performance criteria. Finally, we show the scatter
plot of our proposed method on the entire WIVC 3D Phase-
II database in Fig. 4(c). All these results, together with the
results shown in Table IV, Table V, and Table VI, verify the
outstanding performance of our method for evaluating both
symmetrically and asymmetrically distorted stereopairs.

C. Model Ablation Study

Since our proposed method addresses the SIQM problem
by fusing the degradations on hierarchical deep features, it is
necessary to validate the reasonability of integrating the quality
estimators across different layers in deep neural network.
Meanwhile, in order to fuse the layer-wise monocular quality
scores into a single final binocular quality score, BQF is
first performed to obtain layer-wise binocular quality scores
which are then regressed into a single binocular quality score
as the final prediction in our method. In this section, we
conduct a model ablation study on the LIVE 3D Phase-I
and Phase-II databases to investigate the contribution of BQF
and hierarchical layer fusion, respectively. To demonstrate
the importance of BQF, we implement a model without the
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TABLE VII
PERFORMANCE COMPARISON ON THE WATERLOO IVC 3D PHASE-II DATABASE. RESULTS OF THE BEST-PERFORMING METHOD ARE BOLDED.

Methods Symmetric Distortion Asymmetric Distortion All
PLCC | SRCC | KRCC | PLCC | SRCC | KRCC | PLCC | SRCC | KRCC
PSNR 0.688 0.535 0.391 0.627 0.485 0.326 0.639 0.496 0.352
SSIM [7] 0.736 0.562 0.398 0.547 0.452 0.318 0.550 0.468 0.332
Benoit’s [14] | 0.755 0.571 0.401 0.555 0.454 0.317 0.551 0.460 0.321
You’s [15] 0.763 0.560 0.401 0.686 0.600 0.423 0.682 0.587 0.418
Yang’s [26] 0.792 0.663 0.485 0.641 0.595 0.415 0.639 0.588 0.414
Chen’s [58] 0.837 0.758 0.564 0.633 0.563 0.406 0.613 0.578 0.417
Wang’s [52] 0.938 0.905 0.732 0.880 0.848 0.665 0.892 0.869 0.690
Proposed 0.944 0.906 0.752 0.884 0.853 0.677 0.911 0.905 0.741
098
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BQF operation for comparison. To be specific, the layer-wise Fig. 6. Performance results of the binocular quality score in each single

monocular quality scores are directly averaged to obtain the
layer-wise binocular quality scores which are also regressed
using SVR. We denote this comparison model as W/O BQF
hereinafter. The performance comparison between W/O BQF
and the proposed method is shown in Fig. 5. It is obvious that
the proposed method outperforms the W/O BQF model by
a large margin especially on the LIVE 3D Phase-II database
which contains both symmetrically and asymmetrically distort-
ed stereopairs. Such observation is consistent with a previous
conclusion that an adaptive binocular combination scheme is
particularly important for evaluating asymmetrically distorted
stereopairs. To verify the importance of hierarchical layer
fusion, we compute the performance results of the binocular
quality score in each single layer. The results are depicted
in Fig. 6. One can see that the performance results associated
with each individual layer-wise binocular quality scores are all
worse than the proposed method. This demonstrates the rea-
sonability and effectiveness of fusing the quality degradations
on hierarchical deep features for solving the problem of SIQM.
Through such model ablation studies, an important conclusion
can be drawn that both MQE and BQF should be performed
in a hierarchical manner in FR-SIQM. This can be justified
by the fact that the structure of human brain is inherently
hierarchical so that our designed SIQM quality metric should
well resemble this property.

Additionally, we also compared VGG-16 [41] with other
three networks including AlexNet [36], GoogleNet [63], and
ResNet-50 [64] to demonstrate the effectiveness of VGG-16
as the initial feature extractor. Similarly, the compared three
networks are also pre-trained on the ImageNet dataset. The
MQE and BQF strategies remain unchanged. Fig. 7 shows the
performance values of different models. We can observe that

layer. (a) PLCC on LIVE 3D Phase-I, (b) SRCC on LIVE 3D Phase-I, (c)
PLCC on LIVE 3D Phase-II, (d) SRCC on LIVE 3D Phase-II.

the proposed method using VGG-16, although almost the same
with the one using ResNet-50, performances better than the
ones using AlexNet and GooleNet. Considering the number of
feature maps in ResNet-50 is much more than that in VGG-16,
we finally adopt the VGG-16 network for feature extraction
to achieve a better tradeoff between efficacy and efficiency.

Finally, in order to demonstrate the effectiveness of the pro-
posed hierarchical deep feature-based gain control model for
BQEF, we also compared with other two binocular combination
schemes including the quadratic summation (QS) model [44]
and vector summation (VS) model [45]. For both the standard
QS model and VS model, the suggested binocular combination
schemes are based on the brightness information. Denote the
monocular brightness flux signals of the left-eye and the right-
eye by ¢ and €', respectively. The binocular combination
scheme suggested by the standard QS model is described as
follows:

Fo(IF 1) = J(e1)? + (R)2, (28)
The binocular combination scheme suggested by the standard

VS model is described as follows:

(GL)2 + (ER)2

Ity =
fB( ) ) 6L+€R

; (29)
To adapt these models to BQF, we directly fed the layer-wise
monocular quality scores into the above equations to compute
the corresponding layer-wise binocular quality scores. The
comparison results by using different binocular combination



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

097 m AlexNet m GoogleNet ResNet-50 VGG-16

0.96

0.95

0.94
% 093 0.96 0.953
T X I
c 0% 962 955 pes2 0927
T 091 I N I
= 9 I 928
5 09 1

0 9

0.89 2

0.88 0 0

0.87

0.86

PLCC SRCC PLCC SRCC
LIVE 3D Phase-| LIVE 3D Phase-l|

Fig. 7. Performance comparison by using different networks for initial feature
extraction. The compared networks include AlexNet [36], GoogleNet [65], and
ResNet-50 [66].
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Fig. 8. Performance comparison by using different binocular combination
schemes including the quadratic summation (QS) model [44] and vector
summation (VS) model [45].

schemes are presented in Fig. 8. We can observe that the pro-
posed method and the VS-based method perform much better
than the QS-based method. The reason is that the QS model
can only characterize the binocular combination behaviors for
the case that the input brightness is symmetric for both eyes,
while failing to characterize the well-known the cyclopean
perception [47] and the Fechner’s paradox [48]. Although
the VS-based method is able to somehow characterize the
cyclopean perception in human brain, it still fails to resemble
the fact that human brain is inherently hierarchical. Therefore,
the VS-based method only performs moderately. Overall, the
proposed method performs the best as it not only takes the
Fechner’s paradox and the cyclopean perception into account,
but also well resemble the hierarchical visual information
processing mechanism of the human brain.

D. Running Time

A good SIQA algorithm is expected to have high predictive
accuracy, while being computationally efficient. Computation-
al speed is another important factor for evaluating a SIQA
metric, as the quality of an input stereoscopic image needs to
be judged online in many practical applications. Therefore,
we also test and report the running time of the proposed
method. It takes 2.905 seconds to obtain the quality score of a
640x480 stereoscopic image on a personal computer with an
Intel(R) Core(TM) i5-4200M CPU Processor at 2.5 GHz, 8 GB
RAM, Windows 7 Pro 64-bit. Note that, the running time will

be further reduced based on a parallel computing paradigm
where the layer-wise monocular quality scores and layer-wise
binocular quality scores can be estimated in a parallel manner.
Overall, considering the outstanding predictive performance,
we believe that such running time is promising.

E. Limitations

There are two major limitations of the proposed method.
First, we use a machine learning-based regression model to
fuse the layer-wise binocular quality scores into a single
quality score. Thus, the proposed method may not be traceable
because the machine learning model works as a black-box
module in our system. In the future work, we plan to find
a more explicit way to fuse the layer-wise binocular quality
scores so that the role of each layer can be better understood.
Second, the used datasets involve five distortion types which
are commonly encountered in stereoscopic image processing
systems. The five distortion types include WN, GBLUR,
JPEG, JP2K, and FF. However, the much more complex real
camera distortions are not specifically treated in our SIQM
system, which also remains a future work.

V. CONCLUSION

This paper has presented a new FR-SIQM method by
measuring and fusing the degradations on hierarchical features
extracted from pre-trained VGG-16 model. The theoretical
development of the proposed model to the community is that
we demonstrate that both the two stages in FR-SIQM, i.e.,
MQE and BQF, should be performed in a hierarchical manner
accounting for hierarchical features from low-level to high-
level. To be specific, the role of hierarchical features in our
method is two-fold: hierarchical feature maps for MQE which
estimates a set of layer-wise monocular quality scores, as well
as a weighting basis for BQF which estimates a set of layer-
wise binocular quality scores. The layer-wise binocular quality
scores over layers are fused into a final binocular quality
score using SVR. The innovation of this work is that we
make the first attempt to make use of hierarchical features
extracted from pre-trained deep neural networks to facilitate
SIQM and demonstrate its effectiveness. The proposed method
is validated by experiments on several public available stereo-
scopic image quality databases and the experimental results
confirm the state-of-the-art performance as well as the efficient
computational speed of our proposed method. Future work
will focus on extending the framework to address stereoscopic
video quality measurement by using deep neural networks for
hierarchical spatio-temporal feature extraction.
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