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Abstract—Objective quality assessment of stereoscopic omni-
directional images is a challenging problem since it is influenced
by multiple aspects such as projection deformation, field of
view (FoV) range, binocular vision, visual comfort, etc. Existing
studies show that classic 2D or 3D image quality assessment
(IQA) metrics are not able to perform well for stereoscopic
omnidirectional images. However, very few research works have
focused on evaluating the perceptual visual quality of omni-
directional images, especially for stereoscopic omnidirectional
images. In this paper, based on the predictive coding theory
of the human vision system (HVS), we propose a stereoscopic
omnidirectional image quality evaluator (SOIQE) to cope with
the characteristics of 3D 360-degree images. Two modules are
involved in SOIQE: predictive coding theory based binocular
rivalry module and multi-view fusion module. In the binocular
rivalry module, we introduce predictive coding theory to simulate
the competition between high-level patterns and calculate the
similarity and rivalry dominance to obtain the quality scores
of viewport images. Moreover, we develop the multi-view fusion
module to aggregate the quality scores of viewport images with
the help of both content weight and location weight. The proposed
SOIQE is a parametric model without necessary of regression
learning, which ensures its interpretability and generalization
performance. Experimental results on our published stereoscopic
omnidirectional image quality assessment database (SOLID)
demonstrate that our proposed SOIQE method outperforms
state-of-the-art metrics. Furthermore, we also verify the effec-
tiveness of each proposed module on both public stereoscopic
image datasets and panoramic image datasets.

Index Terms—Image quality assessment, stereoscopic omnidi-
rectional image, predictive coding theory, binocular rivalry, field
of view, human vision system, parametric model.

I. INTRODUCTION

W ITH the fast proliferation of Virtual Reality (VR)
technologies, panoramic images and videos have been

applied in plenty of application scenarios, such as film and
television, broadcast live, cultural relic protection, product
design, automatic driving, business marketing, medical exami-
nation, education, etc [1]. According to [2], user experience is
one of the motivations for the development of VR technologies
and applications. Thus, the quality assessment of VR contents
has become increasingly important to maximize the perceptual
experience in each stage ranging from content acquisition,
format conversion, compression, transmission to display.

The authors are with the CAS Key Laboratory of Technology in Geo-
Spatial Information Processing and Application System, University of Science
and Technology of China, Hefei, Anhui, 230027, China (e-mail: chenzhi-
bo@ustc.edu.cn; xujiahua@mail.ustc.edu.cn; lcy1993@mail.ustc.edu.cn; wei-
chou@mail.ustc.edu.cn).

This work was supported in part by NSFC under Grant 61571413,
61632001.

Facebook released an open-source 3D-360 video capture
system Facebook Surround 360 [3] in 2016, which makes nat-
ural stereoscopic omnidirectional images and videos become
available to consumers. Moreover, with the development of
5G, much higher bandwidth can be utilized to transmit VR
contents, it is a trend that growing panoramic images and
videos will be rendered with 3D format in the near future [1].
Although an in-depth study of image quality assessment (IQA)
has been conducted in recent years [4], there is still a lack of
effort to predict the perceptual image quality of panoramic
images, especially for stereoscopic omnidirectional images.

Similar to other image formats, the quality assessment
of 3D panoramic images can be generally divided into two
categories, namely subjective IQA and objective IQA [5].
Although subjective opinion provides the ultimate perceptual
quality evaluation, it is limited in real applications due to
the inconvenience and high cost of subjective evaluation.
Therefore, it is indispensable to develop an effective objective
image quality assessment algorithm which can automatically
predict the perceived image quality of 3D 360-degree images.

In order to investigate stereoscopic omnidirectional image
quality assessment (SOIQA), we need to dig deeper to find
out the similarities and differences among stereoscopic image
quality assessment (SIQA), omnidirectional image quality
assessment (OIQA) and SOIQA. SOIQA is a combination of
OIQA and SIQA, it has the characteristics of both stereoscopic
and omnidirectional images. As a result, SOIQA cares more
about projection deformation, field of view (FoV) range,
binocular perception, visual comfort, etc. Firstly, users browse
panoramic images in the form of a spherical surface when
wearing head-mounted display (HMD), but VR images cannot
be transmitted as a sphere. Then, we need to convert the VR
contents into 2D format, which is friendly to standard encoders
and decoders. The most common format used in encoding
is equirectangular projection (ERP) format [6] which has a
problem of pixel redundancy in polar regions. Other formats
like Cubemap projection [7] would break pixel connectivity
though reducing pixel redundancy. Projection deformation is
introduced during the format conversion process. Secondly, in
contrast to conventional 2D images, panoramic images have an
unlimited field of view, users can freely change their viewing
directions to explore the whole scene. However, only contents
inside the viewport are visible at a time. Thirdly, binocular
perception is the characteristic of 3D images as well as 3D
panoramic images. Apart from depth perception, binocular
fusion, rivalry or suppression might happen if there exist
differences in the signals the two eyes perceived [8]. Finally,
visual discomfort is caused by the confliction between human
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vision and cognition [9]. Long-term binocular rivalry or VR
sickness [10] caused by fast motion will definitely cause visual
discomfort. These characteristics make SOIQA an intractable
challenge.

(a) (b)

Fig. 1: An example of the 3D viewport image. (a) Generation
of the left and right viewport images given the viewpoint and
FoV range. (b) The left and right view for 3D viewport image
in the realistic environment.

Based on the above characteristics of stereoscopic omnidi-
rectional images, we convert the omnidirectional images into
several viewport images given viewpoints and FoV range. An
example of the 3D viewport image generation is given in Fig.
1(a). Fig. 1(b) shows the left and right viewport images in the
real environment. After conversion, the projection deformation
could be alleviated owing to the reduced stretched regions, and
the viewport images derived from different viewpoints can still
reconstruct the 360◦ × 180◦ scenery. Therefore, the problem
of SOIQA is decomposed into SIQA of viewport images and
quality aggregation.

Up to now, researchers have carried out studies on SIQA.
In the early stage, it has been explored to combine the quality
scores of two single views to predict perceived quality of 3D
images based on existing 2D IQA metrics such as PSNR,
SSIM [11], MS-SSIM [12] and FSIM [13]. Yasakethu et al.
[14] applied 2D metrics, including PSNR, SSIM and VQM
[15] to left and right view images separately, and then averaged
to a final score. Benoit et al. [16] used 2D IQA metrics to
calculate the quality of left and right view images as well
as disparity map. Then these quality scores were combined to
estimate an overall 3D image quality. You et al. [17] leveraged
a variety of 2D IQA metrics on stereo pairs and disparity map,
then pooled them to predict quality of stereoscopic images.

The above SIQA metrics show high performance on sym-
metrically distorted stereoscopic images but fail to evaluate
asymmetrically distorted stereoscopic images. The asymmet-
rical distortion means that left and right views in stereoscopic
images are impaired by different types or levels of degradation,
and it often leads to binocular rivalry in which perception
alternates between different views [18]. In recent years, plenty
of works have applied the binocular rivalry model to SIQA,
which have achieved high performance on asymmetrically
distorted stimulus, and proved the effectiveness of introducing
the binocular rivalry model to SIQA.

In the literature, binocular rivalry is interpreted by a low-
level competition between the input stimulus, and the competi-
tion is related to the energy of stimuli [18]–[20]. It is believed
that stimulus with higher energy will gain rivalry dominance

in the competition. For example, if energy of left view image
is greater than that of right view, then the left view will be
dominant during the rivalry. Based on this psychophysical find-
ing, some energy based binocular models have been proposed
and applied to SIQA. Ryu et al. [21] developed a binocular
perception model considering the asymmetric properties of
stereoscopic images. Chen et al. [22] proposed a full-reference
metric that combined left and right views with disparity map
into a cyclopean image. Afterwards, a nature scene statistics
(NSS) based no-reference metric was presented by Chen et
al. [23], where the support vector regression (SVR) [24] was
used to predict the final score. These metrics need the disparity
map, which is usually time-consuming, and the performance
is related to the stereo matching algorithm. Lin et al. [25]
incorporated binocular integration behaviour into existing 2D
models for enhancing the ability to evaluate stereoscopic
images. Wang et al. [26] built a 3D IQA database and proposed
a full-reference metric for asymmetrical distortion evaluation
based on energy weighting.

Moreover, some existing psychophysical and neurophysio-
logical studies have tried to explain and model the binocular
rivalry phenomenon by predictive coding theory [27]–[29]. It
is a popular theory, which is about how brain processes sensing
visual stimuli. According to the predictive coding theory, the
human vision system (HVS) tries to match bottom-up visual
stimuli with top-down predictions [30]–[32]. Compared to the
conventional perspective on binocular rivalry which believes
competition is low-level inter-ocular competition in early
visual cortex, the binocular rivalry models based on predictive
coding stress more on high-level competition [29]. Predictive
coding theory has achieved some success in accounting for the
response properties of the HVS [33]–[35], and it fits with a
wide range of neurophysiological facts [36]–[40]. Therefore,
we believe applying the binocular rivalry model based on
predictive coding theory to SIQA is more in line with the HVS
and can achieve more reliable and interpretable performance
than the traditional binocular rivalry model.

As previously stated, SOIQA is a combination of SIQA
and OIQA. SIQA is handled with predictive coding based
binocular rivalry model in our method. Another significant
aspect of SOIQA is how to predict the quality of a 360-degree
image. Quality assessment of panoramic contents has attracted
extensive attention recently due to the rapid development
of VR technologies. To further investigate OIQA, several
databases [41], [42] consisting of various distortions were
built for the design of objective metrics to automatically
predict image quality. Firstly, some PSNR based metrics were
proposed to evaluate the quality of panoramic images, namely
spherical PSNR (S-PSNR), weighted-to-spherically-uniform
PSNR (WS-PSNR), craster parabolic projection PSNR (CPP-
PSNR). Instead of calculating PSNR directly on projected
images, Yu et al. [43] proposed S-PSNR to overcome the
oversampling drawback of redundant pixels and selected u-
niformly distributed points on the sphere. However, these
sampled points are usually fixed and less than spherical
pixels which may cause information loss. Then, Sun et al.
[44] developed WS-PSNR that can be directly calculated on
2D format without converting to other formats. The original
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error map was multiplied by a weight map that can reduce
the influence of stretched areas, but WS-PSNR cannot work
across different formats. Moreover, CPP-PSNR [45] was put
forward to resolve the problems of S-PSNR and WS-PSNR.
It utilized all the pixels on the sphere surface, and can be
applied to different projection formats, but interpolation was
introduced during format conversion which would lower the
precision. Though these PSNR based objective metrics can be
easily integrated into codecs, their relevance with subjective
perception is still quite low.

Therefore, some perception-driven quality assessment mod-
els for VR contents were designed via machine learning
scheme. Kim et al. [46] presented a deep network consisting of
VR quality score predictor and human perception guider. The
VR quality score predictor was trained to accurately assess
the quality of omnidirectional images, and fool the guider
while the human perception guider aimed to differentiate the
predicted scores and subjective scores. Yang et al. [47] applied
3D convolutional neural networks (3D CNN) [48] to blindly
predict 3D panoramic video quality. It took the difference
frames between left and right view images as inputs which can
reflect distortion and depth information. However, the above
models were trained on 2D patches from ERP format that
conflicted with the actual viewing experience. As inspired by
[49], [50], viewport images play a significant role in OIQA,
we therefore build our model based on viewport images.

In addition, Yang et al. [51] leveraged multi-level quality
factors with region of interest (ROI) analysis to estimate the
quality of panoramic videos using back propagation (BP)
neural network. It inspires us that different viewport im-
ages share various weights in one omnidirectional image.
According to [52], [53], head and eye tracking data could
be utilized to acquire saliency information that is beneficial
to OIQA. Consequently, location weight and content weight
are introduced for aggerating image quality scores of separate
viewport images.

In this paper, we propose a biologically plausible binocular
rivalry module based on predictive coding theory for assessing
the perceptual quality of stereoscopic viewpoint images. To the
best of our knowledge, it is the very first work to introduce
predictive coding theory into modeling binocular rivalry in
SIQA as well as SOIQA. Specifically, binocular rivalry is
simulated as the competition between high-level patterns rather
than low-level competitions since the principle of the HVS
process is to match bottom-up visual stimuli with top-down
predictions [29]. In the predictive coding based binocular
rivalry module (PC-BRM), the hypothesis for left view and
right view will compete with each other according to the
rivalry dominance. It is composed of prior and likelihood
calculated from the predictive coding process. Moreover, a
multi-view fusion module is developed to integrate quality
scores of viewport images through both location weight and
content weight scheme. The binocular rivalry module and the
multi-view fusion module can be applied to 3D images and
2D panoramic images respectively. Finally, the two modules
form the stereoscopic omnidirectional image quality evaluator
(SOIQE) which can accurately predict the visual quality of
stereo 360-degree images. It is a parametric model without

necessary of regressive learning, and each parameter in this
model corresponds to a clear physical meaning. We test
SOIQE on the self-built public stereoscopic omnidirectional
image quality assessment database (SOLID) [54], and the
experimental results show its high correlation with human
judgements. Besides, due to the lack of other 3D panoramic
image databases, the generalization and robustness of our
method are verified by the performance evaluation on two
well-known 3D image databases and two public 2D omnidi-
rectional image databases. The SOLID database and the source
code of SOIQE are available online for public research usage
1.

The rest of this paper is organized as follows. The predictive
coding theory is reviewed in Section II. Section III introduces
the proposed stereoscopic omnidirectional image quality e-
valuator for SOIQA in details. We present the experimental
results and analysis in section IV, and conclude the paper in
Section V.

II. PREDICTIVE CODING THEORY

Representing the environmental causes of its sensory input
is the core task for the brain [28]. Given a sensory input,
the neural computation system will predict what the cause of
sensory input is. Then, the perceptual content is determined by
the hypothesis (i.e. predicted cause) which generates the best
prediction. However, it is computationally difficult because the
hypothesis is difficult to predict. The hierarchical Bayesian
inference using the generative model can deal with these
challenges by furnishing formal constraints on the mapping
between hypothesis and effect [28]. In this section, we will
introduce a predictive coding model, and propose a binocular
rivalry model based on the predictive coding theory.

A. Predictive Coding Model

The simplest predictive coding model is the linear pre-
dictive coding (LPC) in digital signal processing [55]. It is
first applied to explain efficient encoding in the retina, and
then subsequently used to model the approximate Bayesian
inference in the HVS.

Rao and Ballard [33] proposed a hieratical model that
the feedback from higher level carries the predictions of
lower level stimuli while the feedforward carries the residual
errors between the stimuli and the predictions. In this paper,
we adopt Rao’s model because of its powerful ability for
representing natural images. Note that the predictive coding
model introduced here is for monocular vision, and it is the
basis of our binocular rivalry model. Given an image I , it
is assumed that the cortex tries to represent the image in
terms of hypothesis, which is represented by a vector r. This
relationship can be modeled by a generative model that the
image I is generated by a combination of the basis vectors:

I = f (Ur) + n, (1)

where f (·) is the activation function, n is stochastic noise and
U is a dictionary. In this model, f (Ur) = f

(∑k
j=1 Ujrj

)
,

1http://staff.ustc.edu.cn/∼chenzhibo/resources.html
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Fig. 2: Simplified schematic of predictive coding theory on binocular rivalry. The black arrow is the top-down prediction from
higher level and the orange arrow is the bottom-up error signals. The hypothesis for left view and right view will compete
with each other in the brain to generate final perceptual inference according to the rivalry dominance.

the coefficients rj correspond to the firing rates of neurons,
and the basis vectors Uj correspond to the synaptic weights of
neurons. The basis vectors in the dictionary U are also called
patterns in the predictive coding model. Binocular rivalry
model based on predictive coding theory stresses more on
the high-level competition between the patterns rather than
low-level signals [29]. Thus, the patterns are important in our
binocular rivalry model.

Given an image I , in order to estimate the coefficient r and
the dictionary U , the optimization function is as follows [33]:

E =
1

σ2
(I − f (Ur))

T
(I − f (Ur)) + g (r) + h (U) , (2)

where T represents the transpose of a vector, g (r) =
α
∑

i log
(
1 + r2i

)
and h (U) = λ

∑
i,j U

2
i,j are the regular-

ization terms for r and U , respectively. Here, the noise n
is assumed as Gaussian with zero mean and variance σ2.
Then, the optimal U and r are obtained using gradient descent
algorithm as follows:

dr

dt
= −k1

2

∂E

∂r
=

k1
σ2

UT ∂fT

∂x
(I − f(Ur))− k1

2
g

′
(r), (3)

dU

dt
= −k2

2

∂E

∂U
=

k2
σ2

∂fT

∂x
(I − f(Ur))rT − k2λU , (4)

where k1 and k2 are positive parameters determining the
learning rates of the network and x = Ur. g

′
denotes the

derivative of g with respect to r and g
′
(ri) = 2αri

1+r2i
. In the

case where f(x) = tanh(x), ∂f
∂x = 1 − tanh(x)2. Through

optimization, the response r indicates the current estimation
of the input image I , and UT represents the synaptic weights.
The feedback neurons convey the prediction f (Ur) to the low
level, and then the difference I − f (Ur) between the current
stimuli I and the top-down prediction r is calculated by the
error-detecting neurons.

B. Binocular Rivalry Model Based on Predictive Coding

The binocular rivalry is a phenomenon in which perception
alternates between left and right views. This phenomenon is
highly related to SIQA because of the possible asymmetrical

distortion in stereo images. Therefore, it is important to apply
the binocular rivalry model to SIQA. There have emerged
some research works about using predictive coding theory
to model binocular rivalry phenomenon in recent years. A
theoretical framework for the computational mechanism of
binocular rivalry was proposed in an epistemological review
[28]. Compared to the conventional perspective on binocular
rivalry which believes competition is low-level inter-ocular
competition in early visual cortex, the binocular rivalry stresses
more on high-level competition [29]. In [27], a hierarchical
model of binocular rivalry was proposed based on the hypoth-
esis that it is competition between top-down predictions for
input stimuli rather than direct competition of stimuli. How-
ever, most existed binocular rivalry models are not developed
for natural scene image. Therefore, they cannot be applied to
image quality assessment directly, such as the model proposed
in [29].

In this paper, we develop a binocular rivalry model based
on predictive coding theory for SIQA according to a general
theoretical framework introduced in [28]. From the Bayesian
perspective, human will perceive the content because the
corresponding hypothesis has the highest posterior probability
[56], [57]. In Fig. 2, given a stereoscopic image, our brain
will first determine a hypothesis that can best predict the
corresponding stimulus, which is regarded as the likelihood.
Besides, the perceptual inference also depends on the prior
probability of hypotheses, which is about how probable the
hypothesis is. Then, the hypothesis for left view and right
view will compete with each other, and the competition is
reflected by the rivalry dominance [26]. To calculate the
dominance, we refer to the posterior probability for each view
which is composed of prior and likelihood calculated from the
predictive coding process as described in Section III B.

III. PROPOSED STEREOSCOPIC OMNIDIRECTIONAL IMAGE
QUALITY EVALUATOR (SOIQE)

Generally, viewing a stereoscopic omnidirectional image is
actually browsing several stereo images continuously. There-
fore, the problem of stereoscopic omnidirectional image quali-
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Fig. 3: The architecture of our proposed stereoscopic omnidirectional image quality evaluator (SOIQE). It takes distorted and
reference 3D 360-degree images as input and converts the images into N stereo viewport images. In the predictive coding based
binocular rivalry module (PC-BRM), quality of N viewport images is computed. In the multi-view fusion module (MvFM),
the final quality is calculated by weighing every viewport’s quality with its location and content.

ty assessment can be converted into multi-view 3D IQA inside
FoV, which is the basic idea of our model. In this section, we
will introduce our model in details.

A. Architecture

The framework of our proposed SOIQE is shown in Fig. 3. It
contains the predictive coding based binocular rivalry module
(PC-BRM) and the multi-view module (MvFM). Given a
stereo panoramic image pair in the ERP format, we first
perform automatic downsampling according to [11]. Then,
multi-viewport images could be acquired from reprojection.
PC-BRM aims to generate prior and likelihood from the view-
port stereo image pairs for calculation of rivalry dominance,
and utilizes the predictive coding coefficients to compute
similarity scores. Further, the quality scores of N viewport
images are estimated, and need to be aggregated, which can
be implemented by MvFM. The content weight for each
viewport image is reflected by its spatial information (SI).
In addition, the centre latitude of each viewport image is
utilized to calculate its corresponding location weight. Finally,
the quality scores of all viewport images are fused together
with the normalized content and location weight to predict
stereoscopic omnidirectional image quality.

B. Predictive Coding Based Binocular Rivalry Module

We use the predictive coding based binocular rivalry module
to predict the quality of stereo viewport image pairs. 3D 360-

(a) (b)

(c) (d)

Fig. 4: (a) The reference viewpoint image, (b) The prepro-
cessed reference viewpoint image, (c) The distorted viewpoint
image, (d) The preprocessed distorted viewpoint image.

degree images are converted into viewport images in order
to simulate the competition between high-level patterns in
binocular rivalry when viewing stereoscopic images.

1) Preprocessing of Viewport Images: The preprocessing
stage is inspired by the lateral geniculate nucleus (LGN)
in the HVS. Given a viewport image I , it is convolved
with a Laplacian-of-Gaussian (LoG) filter L, which standard



6 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING

Fig. 5: Illustration of predictive coding representation. Combination of patterns and coding coefficients (hypothesis) is used to
reconstruct the image block.

deviation is equal to 1.5. The LoG filter is virtually identical
to the Difference-of-Gaussian (DoG) filter, which has been
traditionally used to model circular Receptive Fields in LGN
[35]. The output of this filter is subject to a saturating non-
linearity function:

Ip = tanh {2π (I ⊗L)} . (5)

According to this equation, the preprocessed reference and
distorted stereoscopic viewpoint images are denoted as IRef

p

and IDis
p , respectively. The reference and distorted viewport

images are depicted in Fig. 4(a) and Fig. 4(c). Fig. 4(b) and
Fig. 4(d) are the corresponding preprocessed images. Observed
from Fig. 4(d), some detailed information is lost while some
additional information appears compared to Fig. 4(b).

2) Predictive Coding Representation: We employ the pre-
dictive coding (PC) theory to generate the coding coefficients
of input stereo images for computing similarity and rivalry
dominance. Given a stimulus, the hypothesis is predicted in
this procedure. We use Rao’s hierarchical model [33] in this
stage, and only one level is adopted in our model with lower
computation complexity.

Firstly, the dictionary U is trained by gradient descent
algorithm on a 2D image quality assessment database [58].
Specifically, we initialize the dictionary U and coding coef-
ficients r in the beginning. Then, we fix the dictionary U
and update the coding coefficients r through gradient descent.
Afterwards, we fix the coding coefficients r and update the
dictionary U . It is an iterative updating process according to
Eq. 3 and 4. Since the panoramic image has been converted
into viewport images, and predictive coding model is used to
calculate the hypothesis for each view, inputs of this model
are 2D viewport images which are similar to conventional 2D
natural images. Hence, we can leverage the 2D image database
to train the dictionary, and avoid overfitting issue if training is
taken on tested images. The influence of dictionary size will
be discussed in Section IV.

Based on the dictionary, the predictive coding model is used
to process images. Given a pre-processed image pair IRef

p

and IDis
p with size M × N , we partition them into non-

overlapping patches with the same size L×L. The blocks of
preprocessed reference and distorted images are denoted by
IRef
i and IDis

i respectively, where i = 1, 2, · · · ,
⌊
M×N
L×L

⌋
, ⌊·⌋

is the floor operation. After predictive coding representation,
coding coefficients rRef

i and rDis
i for the i-th block in the

reference image and distorted image are achieved according
to Eq. 3. Fig. 5 illustrates the detailed process of predictive
coding representation. As shown in this figure, the block
of the original image is reconstructed by a combination of
the basis vectors and coding coefficients. Corresponding to
the predictive coding theory, the hypothesis is represented
as the coding coefficients r, and the high-level patterns are
represented as basis vectors.

3) Similarity Calculation: After the predictive coding rep-
resentation, similarity calculation is performed. We aim to
calculate the similarity between the distorted image block IDis

i

and reference image block IRef
i in this step. For each block,

the similarity si is calculated as follows:

si =
1

N

∑
j

 2rRef
ij rDis

ij + C

rRef
ij

2
+ rDis

ij
2
+ C

 , (6)

where C is a constant to prevent dividing by 0, N is the
number of basis vectors in the dictionary, rRef

ij represents the
j-th elements in vector rRef

i , and rRef
i is the hypothesis of

the i-th block in reference image. rDis
ij is similar to rRef

ij

but it represents the coding coefficient of the distorted image.
Until now, we can calculate sLi as the similarity of i-th block
between the reference and distorted viewpoint image of left
view and sRi as that of right view.

4) Rivalry Dominance Allocation: Binocular rivalry oc-
curs when viewing asymmetrically distorted images without
reference, thus only distorted left and right view images
are used to calculate the rivalry dominance. In conventional
binocular rivalry model, the dominance is usually calculated
by the energy of left and right views. For the binocular rivalry
based on predictive coding, as we analyzed before, the hy-
pothesis with the highest posterior probability will determine
the perceptual content. Thus, the prior and likelihood of the
hypothesis are important to perform perceptual inference and
we utilize both of them to produce the dominance. Note that
we are not going to calculate a probability, we just try to
model the likelihood and prior with a quantity that has similar
physical meaning.

In this module, the patterns (i.e. basis vectors) in predictive
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coding are used to model the prior. The prior is about
how probable the hypothesis is and it is concerned with
the knowledge learned before. Considering the process of
training dictionary, the trained patterns can reflect the texture
or statistical property of images from the training dataset.
Given a test image, if it is similar to the image in the training
dataset, it can be usually reconstructed well in the predictive
coding model. As the prior is related to the patterns, we use
the patterns to model the prior. If the input is an image with
complex texture, then the patterns used to reconstruct the
input should also contain enough information to recover it.
The texture complexity of the pattern can be reflected with its
variance. Larger variance in the pattern means it may contain
high-frequency information. The variance of each basis vector
can be denoted as var (Uj), j = 1, 2, · · · , N , and the prior
of hypothesis for each patch in binocular rivalry is calculated
as vi:

vLi =
∑
j

var (Uj) r
L
ij , (7)

vRi =
∑
j

var (Uj) r
R
ij , (8)

where j means the j-th basis vector used to predict (i.e.
reconstruct) the input stimuli, and rij represents how much the
basis vector contributes when reconstructing the input stimuli.
And rij is obtained from the distorted image blocks in Eq. 7
and 8. var means the variance measurement.

The likelihood is about how well the hypothesis predicts the
input, and the prediction error is used to model the likelihood
in our binocular rivalry model. The prediction error reflects the
difference between the stimulus and the top-down prediction.
If one hypothesis can explain the stimulus primely, then it
should have a smaller prediction error. That is, one hypothesis
with the large likelihood means it has a small prediction error.
In our algorithm, the likelihood is represented as the sum of
squared error map for each block:

EWL
i = 1−

∑
EL

i
2∑

EL
i
2
+
∑

ER
i

2 , (9)

EWR
i = 1−

∑
ER

i
2∑

EL
i
2
+

∑
ER

i
2 , (10)

EL
i = IL

i − f(UrLi ) and ER
i = IR

i − f(UrRi ), (11)

where EL
i represents the error map of left view for the i-

th block, and ER
i represents that of right view. rLi and rRi

are the coding coefficients of the i-th block for both views.∑
E2 denotes the sum of squared error map. The EWL

i and
EWR

i are normalized between each other to avoid the effect
of magnitude issue.

5) Viewport Image Quality Estimation: The prediction
error can also reflect distortion characteristics. This is inspired
by [59] that if one image is distorted by Gaussian white noise,
then the prediction error will also contain white noise. The
distortion characteristic can be described by the variance of
the error map.

Ri = var
(
E2

i

)
. (12)

Given the prior and likelihood, it is natural to combine
them by multiplication. Thus, the final estimated quality of
the viewpoint stereo image is calculated as follows:

wL
i =

vLi EWL
i RL

i

vLi EWL
i RL

i + vRi EWR
i RR

i

, (13)

wR
i =

vRi EWR
i RR

i

vLi EWL
i RL

i + vRi EWR
i RR

i

, (14)

QFoV n =
1

N

∑
i

(
wL

i s
L
i + wR

i s
R
i

)
, (15)

where wL
i and wR

i are the rivalry dominance for the i-th block
in the viewport image. N denotes the number of blocks within
the viewport, and QFoV n is the quality of n-th viewport image.
In order to avoid the effect of magnitude issue, the vi and Ri

are normalized between left and right views similar to Eq. 9
and 10, respectively. In Eq. 13 and 14, it can be seen that each
parameter has a clear physical meaning, and these parameters
are flexible to be combined for predicting the perceived quality
of stereoscopic images.

C. Multi-view Fusion Module

We propose the multi-view fusion module to fuse the quality
of sampled viewport images. First of all, we sample the
viewpoints according to the designed strategy described in the
next paragraph. Then, content weight and location weight are
introduced to implement the quality fusion and calculate the
final quality of a stereoscopic omnidirectional image.

Fig. 6: Stretched polar regions in the panoramic image [60].

1) Viewpoint Sampling Strategy: 360-degree images are
usually transmitted in ERP format which will stretch polar
regions as shown in Fig. 6. However, a panoramic image
is projected onto a sphere surface when being viewed in
the HMD and it differs from being projected into the ERP
format. Considering the polar regions are stretched, we take
a different viewpoint sampling strategy instead of uniform
sampling. Firstly, N0 viewpoints are equidistantly sampled on
the equator, and the angle between two adjacent viewpoints
is computed as θ = 360

N0
. Then, N1 viewpoints of θ degrees

north (south) latitude could be sampled uniformly as follows:

N1 = ⌊N0cosθ⌋ , (16)

Viewpoints of 2θ, 3θ, · · · ,
⌊
90
θ

⌋
θ degrees north (south) lat-

itude can be sampled by repeating the above procedures as
sampling viewpoints of θ degrees. An example is given when
N0 = 8 in Fig. 7. In particular, viewpoints of 90 degrees north
and south latitude are only sampled once.
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(a) (b)

Fig. 7: An example of sampling viewpoints when N0 = 8, (a)
sampling on the sphere, (b) sampling on the plane.

2) Content Weight Calculation: It is a common belief that
different regions have different attractions to observers in one
image. Regions with salient objects or spatial details tend to
catch more attention of viewers which can be reflected by
spatial information (SI) [61] as shown in Fig. 8. Higher SI
means more details in the viewport image that should be
allocated a larger weight. Moreover, the viewport image is
three-dimensional, so we can use the predictive coding based
binocular rivalry model to compute the weighted SI of a
distorted viewpoint image as follows:

SIDL
FoV n = std

[
Sobel

(
IDL
FoV n

)]
, (17)

SIDR
FoV n = std

[
Sobel

(
IDR
FoV n

)]
, (18)

CWFoV n = wL
FoV nSI

DL
FoV n + wR

FoV nSI
DR
FoV n, (19)

where SIDL
FoV n and SIDR

FoV n denote the spatial information of
the n-th distorted viewpoint images IDL

FoV n and IDR
FoV n. std

means the standard deviation measurement, and Sobel is the
Sobel filter. CWFoV n represents the content weight for the n-
th viewpoint image. wL

FoV n is the rivalry dominance for left
view and so is wR

FoV n. They are given as:

wL
FoV n =

1

N

∑
i

wL
i , (20)

wR
FoV n =

1

N

∑
i

wR
i , (21)

where N is the number of blocks within the viewport image.
wL

i and wR
i are described in Section III B.

Fig. 8: Viewport images with various SI.

3) Location Weight Calculation: Subjects tend to view
more frequently at the equatorial regions, and share a similar
possibility of fixating all longitudes in omnidirectional images
according to the statistic of the eye-tracking data in a head and
eye movements dataset for 360-degree images [53]. In Fig.
9. we model the latitude’s probability of being visited using
a Laplace distribution based on this dataset. The probability

of a viewport image being observed can be regarded as the
probability of its viewed central point. Then, the probability
of the viewed central point is related to its latitude. Under
this assumption, we use the Laplace distribution in Fig. 9
to calculate the possibility of one viewpoint image being
visited. The location weight (LW) is represented as the viewing
probability:

LWFoV n = PFoV n, (22)

where LWFoV n is the location weight for the n-th viewport
image, and PFoV n represents the probability of the n-th
observed viewport image. Finally, the weights for N viewport
images are normalized to predict the quality score Q of a
stereoscopic omnidirectional image as below:

WFoV n =
CWFoV nLWFoV n∑
n CWFoV nLWFoV n

, (23)

Q =
∑
n

WFoV nQFoV n, (24)

where WFoV n and QFoV n are the weight and quality of the
n-th viewpoint image.
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Fig. 9: Viewing frequency versus viewport central latitude.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we conduct experiments on the self-built
public stereoscopic omnidirectional image quality assessment
database (SOLID) [54] to prove the effectiveness of our
proposed metric. The viewport images in our experiment cover
a field of view with 90 degrees which is similar to the FoV
range when viewing real panoramic images in HMD. Also,
90◦ FoV would not bring heavy projection deformation. N0

equals 8 as shown in Fig. 7 to keep a balance between
computation efficiency and accuracy in viewpoint sampling
strategy. In addition, the dictionary size is set as 1024×256 to
achieve better performance which will be explained in Section
IV B. Furthermore, since there are no other available 3D
360-degree image quality databases, the validity of predictive
coding based binocular rivalry module and multi-view fusion
module are verified on 3D images and 2D panoramic images,
respectively. Finally, we perform computation complexity tests
on the SOLID database.

A. Databases and Evaluation Measurement

Image quality assessment databases used in our experiment
are listed in Table I and further described in details.
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(a) (b) (c)

(d) (e) (f)

Fig. 10: Reference images in SOLID database [54]. The top
is the left view image and the bottom is the right view in each
reference image. (a) Exihibition (b) Corridor (c) Museum (d)
Building (e) Restaurant (f) Road.

TABLE I: BENCHMARK TEST DATABASES.

Database # of Source
Images

# of Distorted
Images

# of Distorted
Types

Image
Type

# of Assessment
Dimentions

SOLID [54] 6 276 2 3D VR 3
LIVE Phase I [62] 20 365 5 3D 1

LIVE Phase II [22], [23] 8 360 5 3D 1
OIQA [42] 16 320 4 2D VR 1

CVIQD2018 [41] 16 528 3 2D VR 1

1) SOLID [54]: Our first built stereoscopic omnidirectional
image quality assessment database includes 276 distorted
images with two distortion types and three depth levels derived
from 6 high-quality reference images. Subjective assessments
of image quality, depth perception and overall quality are
collected in this database. The reference images are impaired
by JPEG or BPG compression to simulate image quality degra-
dation. There are 84 symmetrically and 192 asymmetrically
distorted images in the database. The corresponding Mean
Opinion Scores (MOSs) are provided for the reference image
pairs and distorted image pairs. Moreover, the MOS values
cover a range of 1 to 5, where higher MOS values represent
better image quality.

2) LIVE Phase I [62]: The database is a 3D image
database containing 20 original stereoscopic images and 365
symmetrically distorted stereoscopic images. There are five
distortion types in this database: Gaussian blurring, addi-
tive white noise, JPEG compression, JPEG2000 compres-
sion and fast fading for simulating packet loss of transmit-
ted JPEG2000-compressed images. The associated differential
Mean Opinion Score (DMOS) which represents human sub-
jective judgments is provided for each stereoscopic image in
the range [0, 80]. On the contrary, lower DMOS values mean
better visual quality and vice versa.

3) LIVE Phase II [22], [23]: The stereo image database
contains 8 original images and 360 distorted stereoscopic
images, which includes 120 symmetrically distorted stereo-
scopic images and 240 asymmetrically distorted stereoscopic
images. The distortion types are the same with that of LIVE
Phase I. For each distortion type, every original stereoscopic
image is processed to 3 symmetrically distorted stereoscopic
images and 6 asymmetrically distorted stereoscopic images.

Each distorted stereoscopic image is also associated with a
DMOS value evaluated by 33 participants.

4) OIQA Database [42]: It is a 2D omnidirectional image
quality assessment database consisting of 16 pristine images
and 320 distorted images under four kinds of distortion types.
More specifically, the artifacts include JPEG compression,
JPEG2000 compression, Gaussian blur and Gaussian noise.
The MOS values are given for both reference and distorted
images in the range [1, 10].

5) CVIQD2018 Database [41]: This 2D panoramic im-
age quality assessment database is the largest compressed
360-degree image database including 16 source images and
528 compressed images. They are compressed with three
popular coding technologies, namely JPEG, H.264/AVC and
H.265/HEVC. The DMOS values are given for all images in
the database.

6) Performance Measures: By following previous methods
[63], four commonly used criteria are adopted for quantita-
tive performance evaluation, including Spearman Rank Order
Correlation Coefficient (SROCC), Pearson Linear Correlation
Coefficient (PLCC), Root Mean Squared Error (RMSE) and
Outlier Ratio (OR). SROCC is calculated according to the
rank of scores, and it is used to evaluate the prediction
monotonicity. PLCC and RMSE are used to evaluate the
prediction accuracy. Prediction consistency is given by OR.
Higher correlation coefficient means better relevancy with
human quality judgements. Lower RMSE and OR means more
accurate predictions. Before evaluating the PLCC, RMSE and
OR performance of a quality assessment metric, the logistic
mapping is conducted. In this paper, we apply a five-parameter
logistic function constrained to monotonic [58]:

y = β1

(
1

2
− 1

1 + exp (β2 (x− β3))

)
+ β4x+ β5, (25)

where x denotes the predicted image quality score of the
objective metric, y is the corresponding mapped score, and
βi(i = 1, 2, 3, 4, 5) represent the five parameters which are
used to fit the logistic function.

B. Performance Comparison

Considering our proposed SOIQE is a full-reference (FR)
model, to make fair comparison, we compare it with other
open source FR state-of-the-art metrics for performance eval-
uation. It should be noted that the comparison is conducted
among several traditional methods rather than learning based
methods since the proposed SOIQE is a parametric model
without necessary of regressive learning. Moreover, since there
is no image quality assessment metric specially designed for
stereoscopic omnidirectional images, our proposed model is
compared with conventional 2D IQA, 2D OIQA, 3D IQA
metrics.

Table II shows the PLCC, SROCC, RMSE and OR perfor-
mance evaluation of 16 FR IQA metrics on SOLID database.
These metrics are divided into four types. Firstly, 2D IQA met-
rics are used for conventional 2D image quality assessment, we
choose nine commonly used metrics for comparison, namely
PSNR, IW-PSNR [64], SSIM [11], IW-SSIM [64], MSSSIM
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Fig. 11: Scatter plots of MOS against predictions by PSNR, IW-PSNR, SSIM, MS-SSIM, IW-SSIM, IFC, VIF, FSIM, VSI,
S-PSNR, WS-PSNR, CPP-PSNR, CHEN, W-SSIM, W-FSIM and SOIQE on the SOLID database [54]. Each point indicates
one distorted image in the database.

[12], IFC [65], VIF [66], FSIM [13] and VSI [67]. The quality
scores for left and right view images are averaged to obtain the
final predicted score. Besides, 2D OIQA metrics are designed
for single view 360-degree image quality assessment. Given
that panoramic images are actually viewed on the sphere, three
metrics in 360Lib Software [68] are utilized for performance
measurement including S-PSNR [43], WS-PSNR [44], and
CPP-PSNR [45]. However, PSNR outperforms S-PSNR/WS-
PSNR/CPP-PSNR which are specially designed for OIQA.
The same trend appears in [46] which aims to assess the
perceptual quality of omnidirectional images. The possible
explanation is that compression would bring heavy blocking
artifacts in smooth areas existing near polar regions, and it
will definitely influence the perceptual quality. This trend is
more obvious in JPEG distortion as shown in Table III. In S-
PSNR/WS-PSNR/CPP-PSNR, the weight for polar regions is
significantly dropped, and the effect of distortion near polar
regions is weakened. Furthermore, 3D IQA metrics are used

to predict the quality of stereoscopic images. Chen [22] is an
open source 3D IQA metric, and a weighting policy [26] is
introduced to further improve the performance of SSIM and
FSIM. As listed in Table II, the best performing metric is
highlighted in bold, and our proposed SOIQE outperforms
these state-of-the-art metrics. The proposed SOIQE cares more
about the characteristic of stereoscopic omnidirectional images
such as eye dominance, FoV range, etc., thus making it a more
suitable metric for 3D OIQA.

Apart from the numerical comparison in Table II, scatter
plots of MOS values versus the predicted scores of objective
metrics are drawn in Fig. 11 to give clear and direct results.
From this figure, we can see that the predicted scores of
SOIQE show better convergency and monotonicity than other
metrics ,which means the proposed SOIQE is more accurate.
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TABLE II: PERFORMANCE EVALUATION OF 16 FR IQA
METRICS ON SOLID DATABASE [54]. THE BEST PER-
FORMING METRIC IS HIGHLIGHTED IN BOLD.

Type Metric PLCC SROCC RMSE OR

2D IQA

PSNR 0.629 0.603 0.789 0.167
IW-PSNR [64] 0.773 0.751 0.643 0.080

SSIM [11] 0.882 0.888 0.478 0.033
MS-SSIM [12] 0.773 0.755 0.643 0.083
IW-SSIM [64] 0.861 0.862 0.516 0.025

IFC [65] 0.632 0.617 0.786 0.149
VIF [66] 0.731 0.670 0.692 0.101

FSIM [13] 0.889 0.883 0.465 0.040
VSI [67] 0.881 0.873 0.479 0.033

2D OIQA
S-PSNR [43] 0.593 0.567 0.816 0.188

WS-PSNR [44] 0.585 0.559 0.823 0.192
CPP-PSNR [45] 0.593 0.566 0.817 0.192

3D IQA
Chen [22] 0.853 0.827 0.530 0.040

W-SSIM [26] 0.893 0.891 0.457 0.025
W-FSIM [26] 0.889 0.885 0.464 0.044

3D OIQA Proposed SOIQE 0.927 0.924 0.383 0.022

C. Performance Evaluation on Individual Distortion Type

To further investigate the differences for individual dis-
tortion type, PLCC, SROCC and RMSE performance of the
proposed method and other metrics for different distortions are
given in Table III. For each kind of distortion, the highest value
across the 16 metrics is highlighted in boldface. The proposed
metric performs the best both on JPEG and BPG compression
distortion. Moreover, the correlations between predicted scores
and MOS values of JPEG distortion are usually lower than
those of BPG distortion, and it can be observed from Table
III and Fig. 11. One possible reason is that blocking effects
caused by JPEG compression are localized artifacts which
may lead to less perceptually separated qualities [23], [62].
According to this, IQA of stereoscopic omnidirectional images
impaired by JPEG compression seems more challenging in
SOLID database.

TABLE III: PERFORMANCE EVALUATION FOR DIFFERENT
DISTORTION TYPES ON SOLID DATABASE [54]. THE BEST
PERFORMING METRIC IS HIGHLIGHTED IN BOLD.

PLCC SROCC RMSE

Metrics JPEG BPG JPEG BPG JPEG BPG

PSNR 0.564 0.740 0.538 0.673 0.901 0.624
IW-PSNR [64] 0.812 0.878 0.800 0.754 0.636 0.444

SSIM [11] 0.907 0.857 0.893 0.879 0.460 0.477
MS-SSIM [12] 0.841 0.730 0.833 0.687 0.591 0.633
IW-SSIM [64] 0.933 0.881 0.927 0.865 0.392 0.438

IFC [65] 0.668 0.721 0.627 0.702 0.812 0.642
VIF [66] 0.858 0.833 0.854 0.774 0.560 0.513

FSIM [13] 0.894 0.896 0.880 0.902 0.490 0.411
VSI [67] 0.898 0.888 0.885 0.886 0.480 0.426

SPSNR [43] 0.515 0.736 0.477 0.660 0.936 0.627
WSPSNR [44] 0.505 0.732 0.464 0.658 0.949 0.631

CPP-PSNR [45] 0.517 0.735 0.475 0.660 0.934 0.628

Chen [22] 0.909 0.797 0.904 0.736 0.454 0.559
W-SSIM [26] 0.905 0.887 0.888 0.879 0.464 0.428
W-FSIM [26] 0.893 0.933 0.885 0.933 0.492 0.333

Proposed SOIQE 0.933 0.955 0.928 0.939 0.393 0.275

TABLE IV: PERFORMANCE EVALUATION FOR SYMMET-
RICALLY AND ASYMMETRICALLY DISTORTED IMAGES ON
SOLID DATABASE [54]. THE BEST PERFORMING METRIC
IS HIGHLIGHTED IN BOLD.

PLCC SROCC RMSE

Metric Sym Asym Sym Asym Sym Asym

PSNR 0.791 0.394 0.789 0.354 0.758 0.756
IW-PSNR [64] 0.828 0.476 0.749 0.468 0.572 0.598

SSIM [11] 0.944 0.821 0.902 0.814 0.409 0.470
MS-SSIM [12] 0.869 0.631 0.836 0.615 0.613 0.638
IW-SSIM [64] 0.828 0.606 0.802 0.603 0.570 0.541

IFC [65] 0.715 0.409 0.702 0.408 0.716 0.621
VIF [66] 0.733 0.537 0.720 0.471 0.692 0.574

FSIM [13] 0.930 0.853 0.890 0.847 0.456 0.430
VSI [67] 0.931 0.834 0.887 0.807 0.454 0.454

SPSNR [43] 0.805 0.364 0.766 0.313 0.735 0.766
WSPSNR [44] 0.807 0.325 0.762 0.302 0.732 0.778

CPP-PSNR [45] 0.806 0.334 0.766 0.310 0.734 0.775

Chen [22] 0.944 0.767 0.890 0.700 0.411 0.528
W-SSIM [26] 0.944 0.834 0.902 0.832 0.409 0.454
W-FSIM [26] 0.930 0.845 0.890 0.842 0.456 0.440

Proposed SOIQE 0.970 0.867 0.931 0.866 0.301 0.411
1 Sym denotes symmetrical distortion.
2 Asym denotes asymmetrical distortion.

Our SOLID database includes both symmetrical and asym-
metrical distortion. Thus, we also validate the performance
of SOIQE for symmetrically and asymmetrically distorted
stereoscopic panoramic images in Table IV. The proposed
metric achieves the best performance on both symmetrically
and asymmetrically distorted images. Chen [22] doesn’t utilize
binocular rivalry model in his algorithm. Although it can per-
form well on symmetrically distorted stereoscopic images, its
performance on asymmetrical distortion is significantly lower
than other 3D IQA metrics. Besides, compared with 2D IQA
and OIQA metrics, SOIQE shows extraordinary performance
on asymmetrical distortion, which further demonstrates the
effectiveness of our model.

D. Ablation Study and Parameter Influence

To prove the necessity of every part in our model, ablation
study is performed, and the results are exhibited in Fig.
12. Firstly, we use the predictive coding based binocular
rivalry model to process the entire stereoscopic omnidirection-
al images. Then, we utilize different weighting policies for
aggregating the quality scores of viewport images including
averaging, weighting with content alone, and further employ-
ing location weight. The PLCC performance improves from
0.891 to 0.927 on SOLID database.

In our model, the dictionary U = [U1, U2, · · · , Uk] is
constructed by performing gradient descent, where Ui is the
i-th basis vector (i.e. pattern) of the dictionary. We examine
how the patch size and number of basis vectors affect the
performance. In this experiment, we set the patch size as 8,
16 and 32, the number of basis vectors as 512, 1024, 2048
respectively to see the changes of performance. The LIVE
IQA database [58] is used to generate the dictionary, and
comparison is performed on SOLID database. The results are
presented in Table V. The best performance achieves when
patch size equals 16 and the number of basis vectors equals
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Fig. 12: Performance evaluation of ablation study on SOLID
database [54], where PC-BRM means predictive coding based
binocular rivalry model, FoV-AVE represents averaging the
quality scores of viewport images, FoV-CW and FoV-CW+LW
are aggregating the quality scores using content weight and
location weight.

1024. As shown in Table V, if we achieve better performance,
the patch size and number of basis vectors have to increase
simultaneously, otherwise, it may suffer from over-fitting or
under-fitting problem.

TABLE V: PERFORMANCE EVALUATION OF DIFFERENT
PATCH SIZES AND NUMBER OF BASIS VECTORS ON SOLID
DATABASE [54]. THE BEST THREE PERFORMING METRICS
ARE HIGHLIGHTED IN BOLD.

PS
PLCC/SROCC SV

512 1024 2048

8 0.922/0.924 0.882/0.893 0.881/0.891
16 0.919/0.913 0.927/0.924 0.915/0.923
32 0.903/0.900 0.912/0.910 0.920/0.919

1 PS: Patch sizes.
2 SV: The number of basis vectors.

We train the dictionary on the 2D omnidirectional image
database OIQA [42], and 3D omnidirectional image database
SOLID [54], respectively. The results are listed in Table VI.
It can be observed from the table that the performance does
not show huge differences. Therefore, we believe conventional
2D image database is able to generate common patterns
for stereoscopic omnidirectional image quality assessment.
Moreover, the dictionary trained on 2D IQA database allows
better generalization ability to transfer to other image formats.

TABLE VI: PERFORMANCE EVALUATION OF DIFFERENT
TRAINING DATABASE INCLUDING LIVE IQA DATABASE
[58], OIQA DATABASE [42], SOLID DATABASE [54].

Training Database PLCC SROCC RMSE OR

LIVE IQA Database [58] 0.927 0.924 0.383 0.022
OIQA Database [42] 0.927 0.926 0.380 0.021
SOLID Database [54] 0.924 0.923 0.388 0.025

E. Validation of Predictive Coding Based Binocular Rivalry
Model and Multi-view Fusion Model

Since there is no other available stereoscopic omnidirec-
tional image quality assessment database for validation, we
separate the proposed SOIQE into predictive coding based

binocular rivalry model and multi-view fusion model. Then,
we verify the validity of these two models on public 3D IQA
databases and 2D OIQA databases, respectively.

TABLE VII: PERFORMANCE EVALUATION ON 3D IQA
DATABASE LIVE PHASE-I [62] AND PHASE-II [22], [23].
THE BEST PERFORMING METRIC IS HIGHLIGHTED IN
BOLD.

LIVE Phase I LIVE Phase II

Metrics PLCC SROCC RMSE PLCC SROCC RMSE

You [17] 0.830 0.814 7.746 0.800 0.786 6.772
Benoit [16] 0.881 0.878 7.061 0.748 0.728 7.490

Hewage [69] 0.902 0.899 9.139 0.558 0.501 9.364
Chen [22] 0.917 0.916 6.533 0.900 0.889 4.987
Chen [23] 0.895 0.891 7.247 0.895 0.880 5.102

Bensalma [70] 0.887 0.875 7.559 0.770 0.751 7.204
Proposed 0.920 0.917 6.266 0.915 0.907 4.544

The performance of predictive coding based binocular ri-
valry model on LIVE 3D IQA databases Phase-I and Phase-
II are presented in Table VII. We compare this model with
some well-known stereoscopic IQA algorithms. The best result
is highlighted in boldface. From Table VII, we can see that
the proposed metric achieves the best performance on both
LIVE Phase-I and Phase-II databases. There is asymmetrical
distortion on LIVE Phase-II database, thus it demonstrates the
effectiveness of proposed predictive coding based binocular
rivalry model that outperforms other metrics which are based
on conventional binocular rivalry model on LIVE Phase-II
database. In general, the proposed metric correlates much more
consistently with subjective evaluations than other metrics.

Moreover, we conduct experiments on two panoramic image
quality assessment databases, and the performance results are
demonstrated in Table VIII. Note that CVIQD2018 database
includes 16 pristine omnidirectional images, twelve of which
are shot on the ground while the other four are captured in
the air. The probability distribution of viewing directions may

TABLE VIII: PERFORMANCE EVALUATION ON 2D VR IQA
DATABASE OIQA [42] AND CVIQD2018 [41].

OIQA Database

PLCC SROCC

Metrics Orignal MvFM Gain Orignal MvFM Gain

PSNR 0.509 0.592 +16.31% 0.498 0.579 +16.27%
SSIM [11] 0.882 0.884 +0.23% 0.871 0.873 +0.23%

MS-SSIM [12] 0.677 0.713 +5.32% 0.666 0.705 +5.86%
FSIM [13] 0.917 0.931 +1.53% 0.911 0.926 +1.65%
VSI [67] 0.906 0.926 +2.21% 0.902 0.920 +2.00%

Average - - +5.12% - - +5.20%

CVIQD2018 Database

PLCC SROCC

Metrics Orignal MvFM Gain Orignal MvFM Gain

PSNR 0.751 0.840 +11.85% 0.729 0.827 +13.44%
SSIM [11] 0.818 0.889 +8.68% 0.832 0.889 +6.85%

MS-SSIM [12] 0.809 0.893 +10.38% 0.820 0.891 +8.66%
FSIM [13] 0.882 0.911 +3.29% 0.880 0.902 +2.50%
VSI [67] 0.907 0.919 +1.32% 0.900 0.908 +0.89%

Average - - +7.10% - - +6.47%

1 MvFM: Multi-view Fusion Model.
2 Gain: The performance improved compared with Original.
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differ in these two kinds of photos. However, the location
weight in our model is calculated from the empirical distribu-
tion acquired from the head and eye movements dataset [53] in
which the images are almost shot on the ground. Consequently,
we exclude four reference pictures taken in the air, and there
remain 12 reference images and 396 distorted images in
CVIQD2018 database. In Table VIII, five FR metrics PSNR,
SSIM [11], MS-SSIM [12], FSIM [13] and VSI [67] are tested
on the panoramic images, then these metrics are optimized
with multi-view fusion model (MvFM), and their performance
on 2D omnidirectional images has been improved, which
proves the effectiveness of MvFM.

F. Computation Complexity

Furthermore, we compare the computation complexity as
well as the prediction accuracy of our proposed method
with other state-of-the-art metrics. All the experiments are
performed on a machine with Intel(R) Core(TM) i7-4790K
CPU @ 4.00GHz, 16GB RAM and MATLAB R2018b. The
running time of these metrics for predicting quality of a stereo-
scopic omnidirectional image with the resolution 8192x8192
is recorded in Table IX. Besides, the prediction accuracy is
reflected by the PLCC performance. It can be observed from
the table that our proposed SOIQE shows lower computation
complexity compared with several metrics such as CPP-PSNR
[45], Chen [22], etc. Moreover, SOIQE demonstrates the best
prediction accuracy among all the metrics listed in Table IX.

TABLE IX: COMPARISON OF THE COMPUTATION COM-
PLEXITY AGAINST PLCC PERFORMANCE ON THE SOLID
DATABASE [54].

Metrics Time(sec) PLCC Metrics Time(sec) PLCC

PSNR 6.31 0.629 VSI 24.89 0.881
IW-PSNR [64] 67.44 0.773 S-PSNR [43] 18.49 0.593

SSIM [11] 7.66 0.882 WS-PSNR [44] 8.86 0.583
MS-SSIM [12] 12.48 0.773 CPP-PSNR [45] 619.66 0.593
IW-SSIM [64] 72.49 0.861 Chen [22] 3307.02 0.853

IFC [65] 506.81 0.632 W-SSIM [26] 8.52 0.893
VIF [66] 883.87 0.731 W-FSIM [26] 17.46 0.889

FSIM [13] 14.21 0.889 Proposed SOIQE 97.05 0.927

V. CONCLUSIONS

In this paper, to solve the challenging problem SOIQA,
we propose SOIQE that contains the predictive coding based
binocular rivalry module and the multi-view fusion module.
The predictive coding based binocular rivalry model is inspired
by the HVS. It holds the point that it is the competition
between high-level patterns that plays a significant role in
rivalry dominance. To the best of our knowledge, it is the very
first work to introduce predictive coding theory into modeling
binocular rivalry in SIQA as well as SOIQA. Moreover, we
present a multi-view fusion model for aggregating the quality
scores of viewport images. Content weight and location weight
are derived from users preference for scene contents and
viewing directions. Several state-of-the-art 2D/3D IQA and
2D OIQA metrics are compared with our model on five
public databases. Experiment results show that SOIQE has

excellent ability for predicting the visual quality of stereo-
scopic omnidirectional images for both symmetrically and
asymmetrically degraded images of various distortion types.
Besides, it outperforms the classic metrics both on 3D images
and 2D panoramic images which verifies its generalization and
robustness.

In the future, we believe a deep insight on the likelihood
and prior in binocular rivalry will be beneficial to 3D om-
nidirectional video quality assessment. In addition, reference
images are usually unavailable in real situations, we will
develop a no-reference SOIQA metric for better practical
applications in future research. Moreover, apart from image
quality, it is significant to understand human perception on
other dimensions such as depth perception, visual comfort,
overall quality of experience to further improve the user
experience of stereoscopic omnidirectional images.
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