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Abstract—The goal of objective stereoscopic image quality
assessment (SIQA) is to predict the human perceptual quality of
stereoscopic/3D images automatically and accurately. Compared
with traditional 2D image quality assessment (2D IQA), the
quality assessment of stereoscopic images is more challenging
because of complex binocular vision mechanisms and multiple
quality dimensions. In this paper, inspired by the hierarchical
dual-stream interactive nature of the human visual system (HVS),
we propose a Stereoscopic Image Quality Assessment Network
(StereoQA-Net) for No-Reference stereoscopic image quality
assessment (NR-SIQA). The proposed StereoQA-Net is an end-
to-end dual-stream interactive network containing left and right
view sub-networks, where the interaction of the two sub-networks
exists in multiple layers. We evaluate our method on the LIVE
stereoscopic image quality databases. Experimental results show
that our proposed StereoQA-Net outperforms state-of-the-art
algorithms on both symmetrically and asymmetrically distorted
stereoscopic image pairs of various distortion types. And in a
more general case, the proposed StereoQA-Net can effectively
predict the perceptual quality of local regions. In addition, cross-
dataset experiments also demonstrate the generalization ability
of our algorithm.

Index Terms—Stereoscopic image quality assessment, dual-
stream, interactive network, human vision, end-to-end prediction.

I. INTRODUCTION

S INCE Stereoscopic/3D media data undergo diverse quality
degradations during various processing stages, predicting

the perceptual quality of stereoscopic contents objectively
is important [1]–[3]. Stereoscopic image quality assessment
(SIQA) is different from 2D image quality assessment (2D
IQA) due to the extended depth perception dimension and
binocular vision mechanisms between left and right views.
Moreover, the artifacts of stereoscopic images consist of two
categories, namely symmetric distortion and asymmetric dis-
tortion. The symmetrically distorted stereoscopic image pairs
have the same distortion in both left and right view images,
while the asymmetrically distorted stereoscopic left and right
view images have different degrees of distortion. Therefore,
how to effectively evaluate the human perceptual quality of
stereoscopic images, especially those with asymmetric distor-
tions, still remains a challenging research problem.

In general, stereoscopic visual quality assessment is a
kind of artifact measurement in distorted image pairs. When
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reference contents are accessible, some full-reference stereo-
scopic image quality assessment (FR-SIQA) algorithms have
been proposed [4]–[8]. Early methods for FR-SIQA directly
stemmed from metrics for 2D IQA. Several 2D IQA ap-
proaches were applied to left and right views separately, and
depth information was then integrated to provide the ulti-
mate 3D image quality assessment [4], [5]. Afterward, more
sophisticated algorithms were proposed by incorporating the
binocular vision properties of the human vision system (HVS)
into 2D IQA metrics. Typically, psychological vision findings
such as contrast masking effect [6], cyclopean image [7], and
binocular integration behaviors [8] have been employed to
develop various computational models of perceptual 3D image
quality prediction.

However, since original images are not always available
in most practical situations, it is increasingly required to
develop no-reference stereoscopic image quality assessment
(NR-SIQA) methods. These metrics exploit the discriminative
features of distorted 3D images to assess the perceptual quality.
Conventionally, a number of NR-SIQA methods [9]–[13]
manually extract some hand-crafted features based on the HVS
characteristics, natural scene statistics (NSS), etc. The extract-
ed hand-crafted features are then fed into a regression learning
model such as support vector regression (SVR) [14] to predict
the perceptual quality of stereoscopic images. These NR-SIQA
methods can be further divided into two categories including
distortion-specific NR-SIQA [15] and general-purpose NR-
SIQA [16]. Nevertheless, it is not robust enough to represent
stereoscopic image distortions by using hand-crafted features
in learning the regression model according to the pre-defined
HVS and NSS models. Therefore, it is difficult to predict the
perceptual quality of stereoscopic images accurately and to
generalize these models to practical NR-SIQA scenarios.

Based on these observations, we explore using an end-to-
end dual-stream interactive deep neural network (DNN) with
multi-layer network interaction to predict stereoscopic image
quality. Recently, deep learning techniques have been widely
used and achieved great success in solving various image
processing and computer vision problems [17]. Except for the
image classification framework, the remarkable ability of DNN
to learn discriminative features provides a promising method
for addressing the NR-SIQA task. One of the advantages
of applying DNN is that it can directly take raw image
data as input and then combine feature learning with quality
regression in the training process. In addition, the DNN can be
more effectively and robustly trained with the specific domain
knowledge. Therefore, this work focuses on the most challeng-
ing general-purpose NR-SIQA, which evaluates stereoscopic
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Fig. 1: The architecture of our proposed StereoQA-Net. The model takes as input left and right view distorted image patches,
and conducts network interaction in multiple layers. The feature maps are subsampled by max pooling. After flattening
convolutional layers and concatenating fully connected layers, the predicted quality score is regressed as a scalar output.

image quality without requiring reference data and knowing
the distortion types. Specifically, this paper presents an end-to-
end dual-stream interactive network called Stereoscopic Image
Quality Assessment Network (StereoQA-Net) that can predict
the perceptual quality of stereoscopic images effectively. The
human visual cortex is a hierarchical structure with reciprocal
cortico-cortical connections among the constituent cortical ar-
eas, which includes the low-level visual area, namely primary
visual cortex (V1), and high-level visual areas from V2 to
V5 [18]. Inspired by the HVS, our proposed StereoQA-Net
involves multi-layer network interaction. In our architecture,
except for the concatenation of a fully connected layer, the
proposed StereoQA-Net integrates left and right view primary
sub-networks at the convolutional layers by summation and
subtraction of the corresponding feature maps for distorted
patch pairs, in accord with the fusion and disparity information
in the HVS.

Previous research works have attempted to exploit deep
neural networks for no-reference image quality assessment
(NR-IQA). Different from other tasks, image quality databases
generally lack large-scale training images with subjective qual-
ity scores. In addition to the insufficient training data, existing
data augmentation and image preprocessing techniques are not
suitable for NR-IQA [19]. According to the training strategies,
deep learning approaches on NR-IQA can be classified into
two categories, namely patch-wise training and image-wise
training.

The patch-wise training strategy partitions raw images into
patches, and then predicts the perceptual quality of each patch
by DNN regression learning. Kang et al. [20] applied convo-
lutional neural network (CNN) to NR-IQA. They proposed a
new shallow network architecture containing a single convolu-
tional layer with a pooling layer, which extracts discriminative
quality-related features from image patches. The whole image
quality is then obtained by averaging the predicted quality
of image patches. Li et al. [21] developed a general-purpose
NR-IQA algorithm by using the shearlet transform [22]–[24]
to extract the primary features of image patches, and then
evolving the features through stacked auto-encoders [25]. They
also utilized a Network in Network (NIN) model [26] pre-
trained on ImageNet. The last several layers of the model
are modified and the image patch qualities are then regressed
through fine-tuning.

In contrast, the image-wise training strategy obtains the
perceptual image quality by aggregating and pooling patch
features or the predicted score of each patch. Bosse et al.
[27], [28] used two training methods for NR-IQA. One of the
training methods is the patch-wise training which is similar to
[20]. The other takes both patch and image into account, i.e.
adding a patch weighted average aggregation layer to learn
the importance of each image patch, and then optimizing
the loss based on the patch and the image jointly. Hou et
al. [29] developed a classification-based deep model to learn
qualitative quality grades. The newly designed quality pooling
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Fig. 2: Examples of distorted stereoscopic images with different distortion types/levels and the corresponding fusion as well
as difference maps. JPEG distorted stereoscopic image (top), low-degree BLUR (i.e. BLUR1) distorted stereoscopic image

(middle) and high-degree BLUR (i.e. BLUR2) distorted stereoscopic image (bottom). The first to the last columns show left
view images, right view images, fusion maps and difference maps, respectively.

approach is then applied to convert the qualitative grades to
numerical quality scores. Kim et al. [30] presented a two-
stage NR-IQA model based on CNN. The model first generates
local quality scores as proxy patch targets. The feature vectors
obtained from image patches are then aggregated by statistical
moments and regressed onto subjective image quality scores.
Ma et al. [31] proposed a multi-task learning framework by de-
composing the NR-IQA task into two subtasks with dependent
loss functions. However, these deep learning methods for NR-
IQA are not appropriate for assessing the perceptual quality
of stereoscopic images due to the complex binocular vision
mechanisms in 3D vision.

In addition, several NR-SIQA methods using CNN and deep
belief network (DBN) have been proposed. For example, Oh
et al. [32] presented a deep no-reference stereoscopic image
quality evaluator by extracting local abstractions, and then
aggregating these local representations into global features.
As for DBN-based methods, Yang et al. [33] considered the
deep perception map and binocular weight model with DBN
to predict stereoscopic image quality.

In this paper, we propose a generic network architec-
ture called Stereoscopic Image Quality Assessment Network
(StereoQA-Net), which is an end-to-end dual-stream interac-
tive network for NR-SIQA. Additionally, to the best of our
knowledge, the proposed StereoQA-Net is the first study of ap-
plying the dual-stream network architecture to the challenging

NR-SIQA task. Our StereoQA-Net is inspired by the recent
works [34], [35] and the human visual cortex responses to
stereoscopic visual signals [36]–[39]. Specifically, during the
3D visual stimuli processing, binocular fusion and disparity
responses are primitively formed in the V1 cortical area which
refers to a low-level visual area. Moreover, the visual signals
from the binocular summation and subtraction channels are
multiplexed, and then each neuron in V1 receives a weighted
sum of the visual stimuli from these two channels [36]. Then,
the output of V2 visual area is used for the processing of two
streams, namely the dorsal stream and the ventral stream. It
is generally assumed that the dorsal stream focuses on the
coarse stereopsis while the ventral stream manages the fine
stereopsis [37]. Further, the binocular fusion and disparity
are enhanced through the high-level cortical areas from V2
to V5 [37]–[39]. Thus the neuron responses to the binocular
fusion as well as the disparity present in both low-level
and high-level visual areas. In other words, the interaction
of left and right views goes through the whole hierarchical
human visual cortex. Therefore, inspired by the dual-stream
interaction mechanism of the HVS, our proposed StereoQA-
Net is an end-to-end dual-stream network involving multi-
layer network interaction between left and right view sub-
networks. The software release of StereoQA-Net is available
online: http://staff.ustc.edu.cn/∼chenzhibo/resources.html for
public research usage.

http://staff.ustc.edu.cn/~chenzhibo/resources.html
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Fig. 3: Loss optimization process of the first 50 epochs for
the training set on the two LIVE SIQA datasets.

The main contribution of the proposed method is the
end-to-end dual-stream interactive network for no-reference
stereoscopic image quality assessment, which contains dense
interaction in multiple layers inspired by the hierarchical dual-
stream interaction of the human visual system. The results
show that:

• The visual quality predictions by the proposed network
are highly correlated with subjective quality judgments
for both symmetrically and asymmetrically distorted im-
age pairs of various distortion types.

• The proposed method can effectively estimate the percep-
tual visual quality of local regions and has a promising
generalization ability.

• For perceptual quality prediction, the experimental results
demonstrate that end-to-end deep learning related features
are more effective than traditional features.

• Different from conventional SIQA, the proposed method
saves the complex computation of disparity map, which
is verified to have lower time complexity.

The remainder of this paper is organized as follows. Sec-
tion II introduces our proposed Stereoscopic Image Quality
Assessment Network (StereoQA-Net) for NR-SIQA in details.
In Section III, we present the experimental results and analysis.
We then conclude the paper in Section IV.

II. PROPOSED STEREOQA-NET

Our proposed framework of using DNN for no-reference
stereoscopic image quality estimation is presented as follows.
We name the proposed end-to-end dual-stream interactive
network as StereoQA-Net. Given an RGB distorted stereo-
scopic image containing left and right view images, we first
sample multiple patches from both left and right view image
pairs. We then use the StereoQA-Net to predict the perceptual
quality score of each input patch pair for distorted stereoscopic
images. After that, the average local quality pooling method

between left and right views is conducted to obtain a quality
estimation for the whole stereoscopic image.

A. Architecture

Fig. 1 illustrates the architecture of our proposed network.
The proposed StereoQA-Net consists of two primary sub-
network streams that represent left and right view paths.
Inspired by the existence of the binocular fusion and disparity
between left and right views in both low-level and high-level
human visual areas [36]–[39], the concatenations between
these two primary sub-networks exist at different layers.
Additionally, the inputs of the proposed StereoQA-Net are
multiple 32×32 patch pairs which are sampled from distorted
left and right view images.

As shown in Fig. 1, each primary sub-network includes
five convolutional layers and two fully connected layers, i.e.
Conv1−Conv5 and FC1−FC2. The identical structure of
each primary sub-network is 32×32−16×16×32−8×8×
32−8×8×64−8×8×64−4×4×128−512−512. The first
and the second layers are convolutional layers that filter the
image patches with 32 kernels. Then, the third and the fourth
layers are convolutional layers with 64 kernels. Besides, the
fifth layer is a convolutional layer with 128 kernels. Finally,
two fully connected layers of both 512 nodes come after the
flattening operation. Deep convolutional networks with each
kernel size of 3 × 3 and a stride of 1 pixel are used for
the model inspired by the recent work [40], where padding
is applied to maintain the patch size unchanged. This small
receptive field for convolutional layers can effectively capture
the notion of five orientations containing up, down, left, right,
and center. Moreover, the max pooling layers are used for
subsampling the image patches that come after Conv1, Conv2
and Conv5 layers. Therefore, the final output feature maps
of these convolutional and max pooling layers are 1/8 of the
original input image patches.

In addition, the concatenations between these two sub-
networks are performed after Conv2, Conv5 and FC2. For
the concatenations of Conv2 and Conv5, the fusion and
difference maps of the corresponding feature maps for dis-
torted left and right patch pairs are concatenated after the
convolutional layers. Further, each FC2 is concatenated, and
then the fully connected structure 2048− 1024− 1 is adopted
to conduct quality regression for each input patch pair. The
final layer of our proposed StereoQA-Net is one dimensional
scalar output that provides the perceptual quality score.

B. Stereoscopic Image Preprocessing

The distorted stereoscopic images are simply partitioned
into multiple m×n image patches for both left and right view
images before they are fed into the proposed StereoQA-Net.
Let Il be a distorted left view image, and Ir be a distorted
right view image. The partitioned image patch number is then
given by:

p =

⌊
M

m

⌋
×
⌊
N

n

⌋
, (1)

where M×N is the resolution of each view (M > m, N > n),
and m = n = 32 for the experiments.
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TABLE I: SROCC, PLCC, AND RMSE COMPARISON ON THE TWO LIVE SIQA DATABASES. FR (NR) INDICATES
FULL-REFERENCE (NO-REFERENCE) MODELS, AND THE BEST EXPERIMENTAL RESULTS ARE IN BOLD

LIVE Phase I LIVE Phase II Weighted Avg.
Type Metrics SROCC PLCC RMSE SROCC PLCC RMSE SROCC PLCC RMSE

FR

Gorley [6] 0.142 0.451 14.635 0.146 0.515 9.675 0.144 0.483 12.172
You [5] 0.878 0.881 7.746 0.786 0.800 6.772 0.832 0.841 7.262

Benoit [4] 0.899 0.902 7.061 0.728 0.748 7.490 0.814 0.826 7.274
Lin [8] 0.856 0.784 - 0.638 0.642 - 0.748 0.714 -

Chen (MS-SSIM) [7] 0.916 0.917 6.533 0.889 0.900 4.987 0.903 0.909 5.765

NR

Akhter [9] 0.383 0.626 14.827 0.543 0.568 9.294 0.463 0.597 12.079
Sazzad [15] 0.624 0.624 - 0.648 0.669 - 0.636 0.646 -
Chen [16] 0.891 0.895 7.247 0.880 0.895 5.102 0.886 0.895 6.182

S3D-BLINQ [41] - - - 0.905 0.913 4.657 - - -
CNN [20] 0.896 0.933 5.948 0.633 0.634 8.632 0.765 0.785 7.281

DNR-S3DIQE [32] 0.935 0.943 - 0.871 0.863 - 0.903 0.903 -
DBN [33] 0.944 0.956 4.917 0.921 0.934 4.005 0.933 0.945 4.464

FC-1024 + SVR 0.935 0.953 4.711 0.942 0.950 3.521 0.939 0.952 4.120
Proposed StereoQA-Net 0.965 0.973 3.682 0.947 0.957 3.270 0.956 0.965 3.477

TABLE II: OR COMPARISON ON LIVE PHASE II DATABASE: FR (NR) INDICATES FULL-REFERENCE
(NO-REFERENCE) MODELS

Type Metrics JP2K JPEG WN BLUR FF All

FR

Gorley [6] 0.028 0 0 0 0.028 0.044
You [5] 0 0 0 0.042 0 0.008

Benoit [4] 0 0 0 0.125 0.014 0.028
Chen (MS-SSIM) [7] 0 0 0 0 0 0

NR

Akhter [9] 0 0 0 0.056 0.069 0.039
Chen [16] 0 0 0 0 0 0
CNN [20] 0.1 0.923 0 0.111 0.083 0.056

Proposed StereoQA-Net 0 0 0 0 0 0

We rescale each image patch to the range [0, 1] and conduct
local normalization [20]. The normalized patch pairs for left
and right views are denoted by Pli and Pri, where i =
1, 2, ..., p. It should be noted that the patch based stereoscopic
image preprocessing is similar to many research works such
as [20], which is a common method to effectively resolve the
lack of training data problem. Therefore, we can obtain a lot
of image patch pairs in this way, which provides sufficient
image patch pairs for training.

C. Network Interaction

In our proposed StereoQA-Net, the concatenations are at
various layers because the interaction between left and right
views exists in the whole hierarchical human visual cortex.
Specifically, we perform concatenation after the second and
the fifth convolutional layers as well as the last fully connect-
ed layer of each sub-network. In other words, the network
interaction is adopted in multiple layers.

We design our dual-stream network with inspiration from
the relationship between deep neural networks and hierarchi-
cal human visual cortical areas. The deep neural networks
model the responses of brain activity across the hierarchical
visual pathway [42]. In addition, the processing scheme in
the primate visual system is presented in the way of deep
hierarchies rather than flat processing [43]. More specifically,
the optic nerve transmits the input stereoscopic visual signals
to the lateral geniculate nucleus (LGN) which relays the
information to the human visual cortex [44]. Further, the
performance optimization of DNN models enables the output
layer to resemble inferior temporal (IT) cortex and the feature

representation of DNN intermediate layers is similar to that
of functional areas in HVS, such as V4 cortex [45]. Also,
quantitative experiments show that the primate ventral visual
pathway encodes increasingly complex stimulus features cor-
responding to the DNN layers [46]. Moreover, the visual brain
representation can be modeled by DNN, which verifies the
consistency between the DNN and HVS [47]. Therefore, the
lower layer Conv2 and the higher layer Conv5 (i.e. the last
convolutional layer of each primary sub-network) are exploited
to generate two concatenated sub-networks.

For the interactions between the convolutional layers such
as Conv2 and Conv5, we first compute fusion and difference
maps by the summation and subtraction operations [48]–[50]
as follows:

S+ = Fl + Fr, (2)

S− = Fl − Fr, (3)

where Fl and Fr are the corresponding feature maps of input
patches for left and right view primary sub-networks.

To demonstrate the effects of summation and subtraction
operations, the fusion and difference maps of distorted stereo-
scopic images are shown in Fig. 2. As we can see from
Fig. 2, the fusion as well as difference maps of left and
right view images with different distortion types/levels are
discriminative and can be trained to learn effective quality
features. In addition, the fusion map reveals the fusion ability
of left and right stereo-halves, while the difference map reflects
the disparity information [48], [51].

For fully connected layers, we also perform the network
interaction of the last fully connected layer for each sub-



IEEE TRANSACTIONS ON IMAGE PROCESSING 6

network. Then, the output feature vector of this network
interaction for fully connected layers is denoted as:

V = [Vl, Vr, VConcate2, VConcate5], (4)

where Vl and Vr represent the output feature vectors of left
and right view primary sub-networks, respectively. Besides,
the output feature vectors of concatenated sub-networks are
VConcate2 and VConcate5, respectively.

D. Patch Pair-Wise Training

To train the proposed StereoQA-Net on GPU, we need to
obtain large-scale training data. Since we adopt fully connect-
ed layers in the proposed network, the sizes of input images
need to be fixed. Additionally, the feature correspondence be-
tween left and right views is required to predict the perceptual
quality for distorted stereoscopic images, especially for those
with asymmetrical artifacts. Therefore, we train our network
on multiple 32 × 32 patch pairs taken from relatively larger
left and right view images separately.

During the training stage, we assign each patch pair a
target quality score as the ground truth score of the corre-
sponding source stereoscopic image. This is because in real
applications, compression distortions for stereoscopic images
such as JPEG are widely used and have been included in
the existing stereoscopic image quality databases. Due to the
homogeneous characteristic of these distortions (i.e. state-of-
the-art distortions in all stereoscopic image quality databases),
we assign the whole distorted image score to cropped patches
inspired by the work in [20]. Suppose that (Pli, Pri) denotes
the input patch pair, and yi is the corresponding ground truth
quality score. Our learning objective function is defined by
Euclidean Loss as follows:

L = ||f(Pli, Pri;w)− yi||2F
w′ = min

w
L

, (5)

where f(Pli, Pri;w) represents the predicted quality score of
the patch pair (Pli, Pri) with network weights w.

For training, stochastic gradient descent (SGD) with mo-
mentum as well as backpropagation is applied to train the
network. Also, the learning rate is initially set to 10−2. Here,
each convolutional layer and the fully connected layers of
sub-networks are followed by Rectified Linear Units (ReLUs)
[52] instead of conventional sigmoid or tanh neurons. Let
wi and ai denote the weights of the ReLU and the outputs
of the previous layer, respectively. Then, the ReLU can be
represented by ReLU = max(0,

∑
i

wiai). Therefore, the

ReLU is a nonlinear activation function by employing a
threshold value to the input, which can effectively simplify
back-propagation, enhance optimization, etc.

In addition to the ReLU, we also adopt dropout technique
to avoid network overfitting. Specifically, we apply dropout
at each fully connected layer of sub-networks. By randomly
setting the outputs of neurons to zero with a probability of
0.5 or 0.35 in our experiments, dropout acts as an effective
approximation and prevents overfitting for training networks
with shared weights.

TABLE III: PERFORMANCE COMPARISON OF
SYMMETRICALLY AND ASYMMETRICALLY
DISTORTED STEREOSCOPIC IMAGE PAIRS

SEPARATELY ON LIVE PHASE II DATABASE (SROCC),
AND THE BEST EXPERIMENTAL RESULTS ARE IN

BOLD

Metrics Symmetric Asymmetric
Chen (MS-SSIM) [7] 0.923 0.842

Chen [16] 0.918 0.834
CNN [20] 0.590 0.633

Proposed StereoQA-Net 0.979 0.927

E. Local Quality Pooling

In the testing stage, we adopt a spatial local quality pooling
method to estimate the whole stereoscopic image quality.
According to the predicted local quality scores of distorted
patch pairs and the homogeneous artifacts in symmetrically
and asymmetrically distorted stereoscopic images, the final
perceptual stereoscopic image quality is derived by averaging
the predicted local quality for each patch pair as follows:

Q =
1

p

p∑
i=1

f(Pli, Pri), (6)

where i = 1, 2, ..., p denote p patch pairs for each distorted
stereoscopic image. Then, we can obtain the global human
visual based perceptual quality for stereoscopic images by the
local quality pooling.

III. EXPERIMENT RESULTS AND ANALYSIS

In this section, we first describe the databases and criteria
used for our experiments. Second, the performance comparison
results for both symmetrically and asymmetrically distorted
stereoscopic images on the LIVE stereoscopic image quality
databases are given. Then, we show the evaluation results on
individual distortion type. Also, we examine the effects of
several network parameters. Moreover, local quality estimation
further demonstrates the effectiveness of our algorithm. In
addition, we conduct statistical significance tests to verify
the statistical superiority of the proposed method. Finally,
cross database and time complexity tests are performed in our
experiments.

A. Databases and Criteria

In order to evaluate our algorithm, we conduct experiments
on the following two SIQA benchmark databases.

LIVE Phase I [53]: This database consists of 365 distorted
stereopairs with five various distortion types derived from
20 reference stereoscopic images. Among the total of 365
distorted stereoscopic image pairs, 80 pairs contain each of
JPEG2000 compression (JP2K), JPEG compression (JPEG),
additive white Gaussian noise (WN), and Raleigh fast fading
channel distortion (FF), and 45 pairs are related to Gaussian
blur (BLUR). All of the distortions are symmetric in nature
representing the same distortion degree in both left and right
view images. The corresponding differential Mean Opinion
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TABLE IV: SROCC COMPARISON FOR INDIVIDUAL DISTORTION TYPE ON THE TWO LIVE SIQA DATABASES.
FR (NR) INDICATES FULL-REFERENCE (NO-REFERENCE) MODELS, AND THE BEST EXPERIMENTAL RESULTS

ARE IN BOLD

LIVE Phase I LIVE Phase II
Type Metrics JP2K JPEG WN BLUR FF JP2K JPEG WN BLUR FF

FR

Gorley [6] 0.015 0.569 0.741 0.750 0.366 0.110 0.027 0.875 0.770 0.601
You [5] 0.860 0.439 0.940 0.882 0.588 0.894 0.795 0.909 0.813 0.891

Benoit [4] 0.910 0.603 0.930 0.931 0.699 0.751 0.867 0.923 0.455 0.773
Lin [8] 0.839 0.207 0.928 0.935 0.658 0.718 0.613 0.907 0.711 0.701

Chen (MS-SSIM) [7] 0.888 0.530 0.948 0.925 0.707 0.814 0.843 0.940 0.908 0.884

NR

Akhter [9] 0.866 0.675 0.914 0.555 0.640 0.724 0.649 0.714 0.682 0.559
Sazzad [15] 0.721 0.526 0.807 0.597 0.705 0.625 0.479 0.647 0.775 0.725
Chen [16] 0.863 0.617 0.919 0.878 0.652 0.867 0.867 0.950 0.900 0.933

S3D-BLINQ [41] - - - - - 0.845 0.818 0.946 0.903 0.899
CNN [20] 0.857 0.447 0.874 0.782 0.670 0.660 0.598 0.769 0.317 0.476

DNR-S3DIQE [32] 0.885 0.765 0.921 0.930 0.944 0.853 0.822 0.833 0.889 0.878
DBN [33] 0.897 0.768 0.929 0.917 0.685 0.859 0.806 0.864 0.834 0.877

FC-1024 + SVR 0.932 0.668 0.920 0.896 0.865 0.873 0.808 0.931 0.660 0.935
Proposed StereoQA-Net 0.961 0.912 0.965 0.855 0.917 0.874 0.747 0.942 0.600 0.951

TABLE V: PLCC COMPARISON FOR INDIVIDUAL DISTORTION TYPE ON THE TWO LIVE SIQA DATABASES. FR
(NR) INDICATES FULL-REFERENCE (NO-REFERENCE) MODELS, AND THE BEST EXPERIMENTAL RESULTS

ARE IN BOLD

LIVE Phase I LIVE Phase II
Type Metrics JP2K JPEG WN BLUR FF JP2K JPEG WN BLUR FF

FR

Gorley [6] 0.485 0.312 0.796 0.852 0.364 0.372 0.322 0.874 0.934 0.706
You [5] 0.877 0.487 0.941 0.919 0.730 0.905 0.830 0.912 0.784 0.915

Benoit [4] 0.939 0.640 0.925 0.948 0.747 0.784 0.853 0.926 0.535 0.807
Lin [8] 0.799 0.196 0.925 0.811 0.700 0.744 0.583 0.909 0.671 0.699

Chen (MS-SSIM) [7] 0.912 0.603 0.942 0.942 0.776 0.834 0.862 0.957 0.963 0.901

NR

Akhter [9] 0.905 0.729 0.904 0.617 0.503 0.776 0.786 0.722 0.795 0.674
Sazzad [15] 0.774 0.565 0.803 0.628 0.694 0.645 0.531 0.657 0.721 0.727
Chen [16] 0.907 0.695 0.917 0.917 0.735 0.899 0.901 0.947 0.941 0.932

S3D-BLINQ [41] - - - - - 0.847 0.888 0.953 0.968 0.944
CNN [20] 0.956 0.630 0.983 0.862 0.846 0.685 0.567 0.855 0.455 0.662

DNR-S3DIQE [32] 0.913 0.767 0.910 0.950 0.954 0.865 0.821 0.836 0.934 0.815
DBN [33] 0.942 0.824 0.954 0.963 0.789 0.886 0.867 0.887 0.988 0.916

FC-1024 + SVR 0.966 0.700 0.971 0.947 0.926 0.887 0.910 0.969 0.959 0.984
Proposed StereoQA-Net 0.988 0.916 0.988 0.974 0.965 0.905 0.933 0.972 0.955 0.994

Score (DMOS) value is provided for each distorted stereo-
scopic image pair. Besides, the DMOS values are roughly in
the range [0, 80], where higher DMOS values indicate lower
visual quality.

LIVE Phase II [7], [16]: It contains 8 reference stereo-
scopic images and 360 distorted stereopairs with five different
distortion types. The distortion types are the same as that
of the LIVE Phase I database. Each distortion type has nine
levels, where one third of the levels are symmetric in nature.
In other words, this database includes 120 symmetrically dis-
torted stereoscopic images and 240 asymmetrically distorted
stereoscopic images that have different degrees of distortion in
left and right view images. Each distorted stereoscopic image
is also associated with a DMOS value, which is similar to that
of the LIVE Phase I database.

Evaluation Method: By following previous methods [54],
four general measures are adopted to evaluate the performance
of SIQA algorithms: 1) Spearman Rank Order Correlation Co-
efficient (SROCC), 2) Pearson Linear Correlation Coefficient
(PLCC), 3) Root Mean Squared Error (RMSE), and 4) Outlier
Ratio (OR). Among these four metrics, the SROCC measures
the monotonicity of two quantities, while the PLCC measures
the linear dependence between the predicted quality scores and

the ground truth targets. Apart from the PLCC, the RMSE
also measures the prediction accuracy, which represents the
distance between the subjective scores and predicted scores.
Moreover, the OR measures the prediction consistency. For
PLCC, RMSE and OR, the five-parameter logistic function is
applied to fit predicted quality scores and DMOS values using
nonlinear least-squares optimization [55]. Higher SROCC and
PLCC values represent good correlation (monotonicity and
accuracy) with human perceptual quality judgments, while the
lower values of RMSE and OR indicate better performance.
In our experiments, the distorted stereoscopic images are
randomly selected 80% as training set and the remaining 20%
as testing set, and the experimental results are obtained after
100 epochs.

B. Performance Comparison

We train the network in a non-distortion-specific manner
to evaluate the performance of our proposed StereoQA-Net.
This way, the distorted stereoscopic images with five various
distortion types are trained and tested simultaneously without
needing a specific distortion type.

Table I shows the SROCC, PLCC and RMSE performance
results on the LIVE Phase I and LIVE Phase II databases
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TABLE VI: PERFORMANCE UNDER DIFFERENT KERNEL SIZES ON THE TWO LIVE STEREOSCOPIC IMAGE
QUALITY DATABASES

LIVE Phase I LIVE Phase II
Kernel Size 3× 3 5× 5 7× 7 9× 9 3× 3 5× 5 7× 7 9× 9

SROCC 0.965 0.958 0.956 0.959 0.947 0.949 0.942 0.947
PLCC 0.973 0.971 0.969 0.972 0.957 0.957 0.952 0.954

TABLE VII: PERFORMANCE UNDER DIFFERENT PATCH SIZES ON THE TWO LIVE STEREOSCOPIC IMAGE
QUALITY DATABASES

LIVE Phase I LIVE Phase II
Patch Size 24× 24 32× 32 40× 40 48× 48 24× 24 32× 32 40× 40 48× 48

SROCC 0.967 0.965 0.962 0.962 0.946 0.947 0.934 0.964
PLCC 0.960 0.973 0.969 0.976 0.958 0.957 0.949 0.970

Fig. 4: Scatter plots of predicted quality scores against the subjective scores (DMOS) of the proposed algorithm and CNN
method [20] for individual distortion type on LIVE Phase I [53].

compared with five state-of-the-art FR-SIQA methods, namely
those of Gorley [6], You [5], Benoit [4], Lin [8], and Chen
[7]. For [7], multi-scale structure similarity index (MS-SSIM)
[56] is used for the performance comparison. We also compare
with four previous NR-SIQA metrics developed by Akhter [9],
Sazzad [15], Chen [16], and Su (i.e. S3D-BLINQ) [41]. Also,
two deep CNN-based methods, namely the NR-IQA model
and the NR-SIQA approach, are benchmarked: CNN [20] and
DNR-S3DIQE [32]. The NR-IQA model named CNN [20] is
employed to train the left and right view networks separately.
The predicted quality scores of distorted stereoscopic images
are then obtained by averaging left and right view qualities.
Moreover, a deep belief network based method called DBN
[33] is also compared. In addition, to compare the end-to-
end deep learning related features with traditional features,
we conduct the experiments by combining the last fully
connected layer feature denoted by FC-1024 with the well-
known support vector regression (SVR) model. In the last
column, the weighted average of SROCC, PLCC and RMSE
over the two databases are reported, we adopt the same method

as [57] to produce the weights. In Table II, it should be
noted that since the standard deviations of DMOS scores
of the LIVE Phase I database are not available [16], we
only show OR numbers on the LIVE Phase II database, as
reported in [16]. From Table I and Table II, we can find that
our proposed algorithm outperforms existing state-of-the-art
NR as well as FR methods. The end-to-end deep learning
related features are more effective than traditional features
for the perceptual quality prediction of stereoscopic images,
which further demonstrates the superiority of deep features
[58]. One possible explanation may be that the proposed
network directly learns the effective feature representations by
training in an end-to-end manner. Note that this network is
not overfitting since the training/testing method is the same as
other learning-based 2D IQA algorithms such as [20] and the
high performance is obtained on testing set, not training set.

Furthermore, we conduct the ablation study of the proposed
network interaction which demonstrates that the experimental
results are improved with the addition of the multi-layer net-
work interaction, especially for those asymmetrically distorted
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Fig. 5: Scatter plots of predicted quality scores against the subjective scores (DMOS) of the proposed algorithm and CNN
method [20] for individual distortion type on LIVE Phase II [7], [16].

Fig. 6: SROCC and PLCC performance with respect to training epochs. (a) Run on LIVE Phase I [53]; (b) Run on LIVE
Phase II [7], [16].

stereoscopic image pairs. Specifically, the SROCC can be
improved from 0.890 to 0.947 for the LIVE Phase II database.

The training loss optimization process on LIVE Phase I and
LIVE Phase II from the first 50 epochs is shown in Fig. 3. It
can be seen that the training process converges well. Further,
we also validate the performance of our proposed algorithm
on symmetrically and asymmetrically distorted stereoscopic
image pairs separately. As can be seen in Table III, our
proposed StereoQA-Net outperforms other state-of-the-art FR
and NR methods for both symmetrically and asymmetrically
distorted stereoscopic images.

TABLE VIII: THE T-TEST RESULTS ON LIVE PHASE I
AND LIVE PHASE II DATABASES

Method LIVE Phase I LIVE Phase II
CNN [20] 1 1

C. Evaluation on Individual Distortion Type

In order to illustrate the performance comparison for in-
dividual distortion type on the hybrid distortion database,
we give the SROCC and PLCC performance comparison
according to various distortion types on both LIVE Phase I and
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Fig. 7: Examples of local quality estimation for different distorted patch pairs (denoted by red bounding boxes) from LIVE
Phase I database. (a) JPEG; (b) BLUR; (c) FF; (d) WN. The corresponding quality scores predicted by the proposed

StereoQA-Net are 46.128, 53.495, 66.804, and 74.013, respectively. Note that higher predicted quality values represent lower
visual quality.

Phase II, as shown in Table IV and Table V respectively. We
can see that even when each distortion type is tested separately,
the proposed StereoQA-Net generally achieves the competitive
performance on each of the five distortion types.

Moreover, Fig. 4 and Fig. 5 depict the scatter plots of D-
MOS versus predictions for individual distortion type on LIVE
Phase I and LIVE Phase II, respectively. Since a straight lined
distribution of the points is better than other arbitrary shapes,
our proposed StereoQA-Net shows much better linearity and
monotonicity than the CNN method [20] for each distortion
type on the two databases.

D. Effects of Parameters

Since several network parameters are involved in the pro-
posed StereoQA-Net design, we examine how these parame-
ters affect the performance of the network on the LIVE Phase
I and LIVE Phase II databases as follows.

Kernel Size: We train and test the proposed StereoQA-Net
with different kernel sizes while fixing the rest of architecture.
Table VI shows how the performance changes with the kernel
size on LIVE SIQA databases. As we can see that our
proposed StereoQA-Net is not sensitive to kernel size.

Patch Size: In our experiments, the quality score of the
whole distorted stereoscopic image pair is obtained by averag-
ing the predicted scores of all sampled patch pairs. Therefore,
we examine how the patch sampling strategy affects the
performance of our method. Specifically, we train and test
the proposed StereoQA-Net with different patch sizes while
fixing the rest of architecture. The performance changes with
the patch size on LIVE SIQA databases are shown in Table
VII. From Table VII, we can see that our proposed StereoQA-
Net is also not sensitive to patch size.

Iterative Epoch: Furthermore, in order to discover how
the iterative epoch of training affects the performance of
our proposed StereoQA-Net, we vary the iterative epoch of
training to plot the performance variation for LIVE Phase I and

LIVE Phase II databases. Specifically, we train the proposed
StereoQA-Net by changing the iterative epoch while fixing
the rest of architecture. Note that we initially set the learning
rate to 10−4 for better visualization. Fig. 6 shows the SROCC
and PLCC performance with respect to the iterative epoch on
the two databases. We can observe that a large number of
iterative epoch brings about the increase of performance for
our proposed StereoQA-Net. Further, we increase the epochs
from 5000 to 6000. We find that the performance improves
slightly. For example, as for LIVE Phase I, the SROCC
changes from 0.947 to 0.948. Therefore, our proposed method
can reach a promising result without too many epochs, which
turns out to be convergent.

E. Local Quality Estimation

Since our proposed StereoQA-Net measures the perceptual
quality of small stereoscopic image patch pairs, it can be
applied to detect local regions with different quality degrees as
well as give a global quality score for the whole stereoscopic
image. We select distorted stereoscopic patch pairs with dif-
ferent distortion types at the same spatial location from LIVE
Phase I, and then perform local quality estimation using our
model trained on LIVE Phase II.

Fig. 7 shows the examples of the predicted quality scores
for the corresponding stereoscopic patch pairs with each of
different distortion levels and types including JPEG, BLUR,
FF, and WN. From Fig. 7, we can see that the proposed
StereoQA-Net can effectively differentiate various distortion
levels and types.

F. Statistical Significance

Further, we conduct statistical significance tests to quantify
whether the comparison results are statistically significant.
Specifically, on each stereoscopic image quality database, a
two-sample t-test is carried out, which is at 1% significance
level using the SROCC value pairs of 100 runs. Note that
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TABLE IX: CROSS DATABASE TEST RESULTS OBTAINED BY TRAINING ON LIVE PHASE II AND TESTING ON
LIVE PHASE I (PLCC)

Metrics JP2K JPEG WN BLUR FF ALL
CNN [20] 0.646 0.562 0.968 0.848 0.803 0.713

Proposed StereoQA-Net 0.981 0.678 0.988 0.947 0.839 0.932

TABLE X: CROSS DATABASE TEST RESULTS OBTAINED BY TRAINING ON LIVE PHASE I AND TESTING ON
LIVE PHASE II (PLCC)

Metrics JP2K JPEG WN BLUR FF ALL
CNN [20] 0.577 0.834 0.739 0.711 0.921 0.656

Proposed StereoQA-Net 0.909 0.661 0.679 0.942 0.968 0.710

TABLE XI: PERFORMANCE COMPARISON OF THE
TIME COMPLEXITY ON THE LIVE PHASE I

DATABASE

Metrics CNN [20] Proposed StereQA-Net
Total time (s) 131.291 37.566

the source codes of other state-of-the-art algorithms are not
publicly available, we only compare our method with CNN
[20] method. Table VIII shows the statistical significance
testing results, where 1 indicates that our proposed StereoQA-
Net is statistically superior to the compared CNN [20] method.

G. Cross Database and Time Complexity Tests

As shown in Table IX, to evaluate the generalization abil-
ity of the proposed StereoQA-Net, we use the stereoscopic
image patch pairs from LIVE Phase II to train the network,
and then test on LIVE Phase I. This is because the LIVE
Phase II database consists of both symmetric and asymmetric
distortions, while the LIVE Phase I database only contains
symmetrically distorted stereoscopic images. Furthermore, as
can be seen in Table X, we also conduct the experiments of
training on LIVE Phase I and then test on LIVE Phase II. It
should be noted that the source codes of other state-of-the-art
algorithms are not publicly available, only CNN [20] is used
for comparison. Experimental results of the cross database test
are shown in Table IX and Table X. As can be seen from
these two tables, our proposed algorithm performs well and is
generalized to different databases.

In addition, we compare the proposed method with CNN
[20] on the LIVE Phase I database to show the lower com-
puting complexity of our proposed StereoQA-Net. From Table
XI, we can find that the proposed algorithm is verified to have
lower time complexity. One possible explanation is that the
CNN [20] method computes two times of quality prediction for
left and right views. In other words, the proposed StereoQA-
Net is specifically designed for predicting stereoscopic image
quality. Moreover, different from conventional SIQA, the pro-
posed metric can relieve the complex computation of disparity
map.

IV. CONCLUSIONS

In this paper, we propose a novel general-purpose NR-SIQA
architecture that contains the multi-layer network interaction

between left and right view sub-networks inspired by the
HVS. The discriminative feature extraction and regression
learning are taken as an end-to-end optimization process. The
predicted stereoscopic image quality of our metric correlates
well with human visual perception. Moreover, our proposed
StereoQA-Net achieves the state-of-the-art performance and
has a promising generalization ability for both symmetrically
and asymmetrically distorted stereoscopic images of various
distortion types.

In future research, the way to design more effective net-
works for stereoscopic image quality assessment should be
considered. More importantly, we will try to gain more
theoretic insight into why the machine-learned features are
better than hand-crafted features for evaluating the perceptual
quality of stereoscopic images. Meanwhile, future work could
also involve modeling the effects of different patches on
the perceived quality for the entire distorted stereoscopic
image. Besides, we plan to advance the proposed architecture
for stereoscopic video quality assessment. Specifically, the
spatiotemporal quality variation and more HVS characteristics
should be taken into consideration. Furthermore, except for
image quality, it is important to understand human perceptual
opinions on other 3D dimensions such as depth perception
and visual comfort, aiming to further improve the proposed
method.
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