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Abstract—Objective quality assessment of stereoscopic
panoramic images becomes a challenging problem owing to the
rapid growth of 360-degree contents. Different from traditional
2D image quality assessment (IQA), more complex aspects
are involved in 3D omnidirectional IQA, especially unlimited
field of view (FoV) and extra depth perception, which brings
difficulty to evaluate the quality of experience (QoE) of 3D
omnidirectional images. In this paper, we propose a multi-
viewport based full-reference stereo 360 IQA model. Due to the
freely changeable viewports when browsing in the head-mounted
display, our proposed approach processes the image inside FoV
rather than the projected one such as equirectangular projection
(ERP). In addition, since overall QoE depends on both image
quality and depth perception, we utilize the features estimated
by the difference map between left and right views which
can reflect disparity. The depth perception features along with
binocular image qualities are employed to further predict the
overall QoE of 3D 360 images. The experimental results on our
public Stereoscopic OmnidirectionaL Image quality assessment
Database (SOLID) show that the proposed method achieves a
significant improvement over some well-known IQA metrics and
can accurately reflect the overall QoE of perceived images.

Index Terms—stereoscopic omnidirectional image, multi-
viewport, image quality assessment, quality of experience

I. INTRODUCTION

Immersive media data such as stereoscopic omnidirectional

images and videos suffer from diverse quality degradations

ranging from acquisition, compression, transmission to display

[1], thus it is of great importance for automatically predicting

the perceptual quality of 3D 360-degree contents to optimize

the coding and processing technologies and maximize the

user quality of experience (QoE) [2], [3]. Compared with

conventional 2D image quality assessment (IQA), it is more

challenging to evaluate the quality of stereoscopic panoramic

images due to the unlimited field of view (FoV) and extra

dimension of depth perception [4]. Although IQA has been

researched in recent years [5]–[7], a few works have been

done to predict the perceptual quality of stereo 360 images

which remains an intractable research problem.

Image quality assessment is mainly divided into two cate-

gories: subjective IQA and objective IQA [8] and it is the same

for stereoscopic omnidirectional image quality assessment

(SOIQA) [9]. Though subjective SOIQA can generate the

mean opinion scores (MOSs) of all the subjects as the most

* Equal contribution.

accurate quality evaluation [10], it is usually unpractical in real

applications due to the time-consuming and labor-intensive

attributes. Hence, the objective metrics designed for SOIQA

are in great demand.

Up to now, several algorithms have been proposed for

stereoscopic image quality assessment (SIQA) and omnidi-

rectional image quality assessment (OIQA). To deal with

SIQA, traditional 2D IQA methods such as peak signal-to-

noise ratio (PSNR), structural similarity (SSIM) [11], multi-

scale structural similarity (MS-SSIM) [12] were performed on

the left and right view images separately in the early stage

[13]. Later, disparity map between two views was employed

to make an improvement [14]. The models mentioned above

show good performance on symmetrical distortion while their

correlations with subjective scores are rather low for asym-

metrical distortion. Then, binocular vision properties of the

human visual system (HVS) were investigated and binocular

fusion, rivalry, suppression models were widely used in 3D

IQA [15]–[18].

In terms of OIQA, several PSNR based metrics includ-

ing spherical PSNR (S-PSNR) [19], weighted-to-spherically-

uniform PSNR (WS-PSNR) [20], craster parabolic projection

PSNR (CPP-PSNR) [21] were proposed by considering the

characteristics of 360-degree images. They are efficient and

easy to be integrated into codecs but the prediction accuracy

is far from satisfactory. Then, some perception-driven IQA

metrics for 360 contents were designed via machine learning

[22], [23] and deep learning [24], [25]. Chen et al. further

incorporated SIQA and OIQA and developed a predictive

coding based model for 3D 360 image quality assessment [26].

Compared with [26], our proposed model not only predicts the

perceptual image quality, but also estimates the overall QoE

which is not mentioned previously. Note that overall QoE is a

measure of the overall level of customer satisfaction with the

perceived image, it considers not only image quality but also

other factors such as depth perception, visual comfort, etc.

In this paper, motivated by the free FoV characteristic and

binocular properties of stereoscopic omnidirectional images,

we propose a novel multi-viewport based algorithm for SOIQA

which considers the image quality inside FoV and the HVS

mechanism. Moreover, the viewpoints are specially selected

instead of uniform sampling. To predict the overall QoE of

3D 360-degree images, depth perception related features are



Fig. 1: The architecture of the proposed stereoscopic omnidirectional image quality assessment (SOIQA) model.

estimated from the difference map between left and right view

images and further integrated with image quality scores. We

test the proposed model on the self-built public stereoscopic

omnidirectional image quality assessment database (SOLID)

[4] and the experimental results verify the effectiveness of

this method.

The rest of the paper is organized as follows. The proposed

multi-viewport based SOIQA metric is described in Section

II. In Section III, we present the experimental results and then

conclude in Section IV.

II. PROPOSED STEREOSCOPIC OMNIDIRECTIONAL IMAGE

QUALITY ASSESSMENT MODEL

In the proposed multi-viewport based SOIQA model, it

takes the reference and distorted stereo 360 image pairs as

input and returns the predicted image quality and overall QoE.

We first illustrate the framework of the proposed model and the

detailed components are described in the following paragraphs.

A. Architecture

The framework of the proposed SOIQA model is depicted

in Fig. 1. It is composed of the viewport sampling, binocular

image quality estimation, depth feature extraction and support

vector regression (SVR). At first, the reference and distorted

3D panoramic image pairs are sampled as several independent

viewport images with an FoV of 90 degree. Then, we use

the well-known full-reference 2D IQA metric feature similar-

ity (FSIM) index [27] to predict the image quality for left

viewport images and right viewport images separately. The

binocular model is adopted to allocate the rivalry dominance

and compute the aggerated score for stereo viewport images.

In addition, we subtract the left and right viewport images to

get the difference map and extract the depth perception related

features from it. Finally, the viewport image quality features

as well as the depth perception features are regressed onto the

final perceptual image quality and overall QoE.

B. Viewpoint Sampling

Omnidirectional images are viewed in the sphere surface

while transmitted and stored in the 2D format. As a result,

evaluating the 2D format omnidirectional image is different

from the actual viewing experience. Moreover, 360 images

rendered in the equirectangular projection (ERP) format usu-

ally stretch polar regions and generate projection deformation.

To solve the above problems, we design a novel viewport

selection strategy instead of uniform sampling on the ERP

format. Assume N0 viewpoints are equidistantly sampled on

the equator, the other points are chosen as follows:

θ=
360◦

N0

, (1)

N1= ⌊N0 cos θ⌋ , N2= ⌊N0 cos 2θ⌋ , ... , (2)

where N1 and N2 represent the number of points sampled

on θ and 2θ degrees north or south latitude. The sampling

procedure lasts until the maximum latitude reaches 90 degree.

These viewpoints are uniformly distributed on the particular

latitudes. Fig. 2 gives an example when N0 = 8 and θ = 45◦.

Note that the viewpoints only sampled once at the south and

north poles.

(a) (b)

Fig. 2: An example of sampling viewpoints when N0 = 8
and θ = 45◦, (a) sampling on the sphere, (b) sampling on the

plane.

C. Image Quality Estimation

In this module, we process the 3D viewport images as

traditional stereoscopic images covering the 90◦ FoV range



and compute the perceptual viewport image quality according

to the binocular rivalry model [28]. For stereo image pairs,

the left and right view images tend to share different weights

which are related to binocular energies. Therefore, we adopt

the local variances to compute the energy maps of both views

as done in [29]. Then, the local energy ratio maps R
L
n and

R
R
n of the n-th left and right viewport images can be denoted

as:

R
L
n =

E
DL
n

ERL
n

and R
R
n =

E
DR
n

ERR
n

, (3)

where E
DL
n , ERL

n , EDR
n and E

RR
n indicate the energy maps

of distorted and reference images for the n-th viewports.

Since the HVS prefer high-energy regions which involve

more information and are easier to attract visual attention, we

employ the energy weighted pooling method [28] to stress

significance on high-energy image regions in binocular rivalry

as follows:

gLn =

∑

i,j E
DL
n (i, j)RL

n(i, j)
∑

i,j E
DL
n (i, j)

, (4)

gRn =

∑

i,j E
DR
n (i, j)RR

n (i, j)
∑

i,j E
DR
n (i, j)

, (5)

where gLn and gRn are calculated by summation on the full

energy and ratio maps. Hence, they denote the level of domi-

nance for the n-th left and right viewport images. After that,

we compute the weights for left and right views as follows:

wL
n =

gLn
2

gLn
2
+ gRn

2
and wR

n =
gRn

2

gLn
2
+ gRn

2
. (6)

Finally, the binocular image quality (feature similarity) Qn

for the n-th viewport image is calculated by a weighted

average of both views:

Qn = wL
nQ

L
n + wR

nQ
R
n , (7)

QL
n = FSIM(IRL

n , IDL
n ) and QR

n = FSIM(IRR
n , IDR

n ),
(8)

where image quality QL
n and QR

n for left and right view images

are obtained through FSIM [27] which can accurately predict

the quality of 2D images. IRL
n , IDL

n , IRR
n and I

DR
n represent

the n-th reference and distorted viewport images.

D. Depth Feature Extraction

As analyzed in [26], depth perception is dominated by

disparity, so we subtract the left and right viewport images

to show the discrepancy between them. To some extent, the

difference map also reflects the disparity which is illustrated

in Fig. 3. As we can observe from Fig. 3, the difference map

of zero disparity is a totally black image. When the disparity

is larger, more information is contained in the difference map.

Thus, we compute the entropy of the difference map for the

n-th viewport as a depth perception related feature Dn as

follows:

S
−

n =
∣

∣I
DL
n − I

DR
n

∣

∣ (9)

Dn = −
∑

i

pi log pi (10)

where I
DL
n and I

DR
n represent the grayscale distorted stereo

pairs for the n-th viewport since humans are more sensitive

to luminance. pi denotes the probability of i-th gray level

appearing in the difference map S
−

n . Note that depth feature

extraction is only performed in the distorted images because

distortion has little effect on the depth perception and the

distorted images are actually observed by the subjects [4].

(a) (b) (c)

Fig. 3: The difference map for viewport images with (a) zero

disparity, (b) medium disparity, (c) large disparity.

E. Quality Regression

After computing binocular feature similarities and extracting

depth features from N viewport images, SVR is adopted

to map them onto the final perceptual image quality and

overall QoE. Note that the LibSVM package is utilized in our

experiment to implement the SVR with a radial basis function

kernel.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we test the proposed model on the self-built

public database SOLID [4]. The experimental results demon-

strate the effectiveness of our algorithm and it outperforms

several classic IQA metrics. In our experiment settings, N0

equals 8 which means 20 viewpoints are selected as shown in

Fig. 2. Moreover, each viewport image covers a 90◦ FoV to

avoid heavy projection deformation.

A. Database and Performance Measure

To our best knowledge, the SOLID database is the only pub-

licly available database built for stereoscopic omnidirectional

image quality assessment which consists of 84 symmetrically

and 192 asymmetrically distorted images. They originate from

6 reference images with two distortion types (JPEG and BPG

compression) and three depth levels (zero, medium and large

disparity). The detail configrations can be found in the web-

page 1. The reference images in the SOLID database are shown

in Fig. 4. Each pristine and degraded image are equipped with

the MOS values of image quality, depth perception and overall

QoE in the range of 1 to 5, where higher subjective score

means better quality.

Three commonly used criteria are utilized for performance

evaluation in our experiment, namely Spearman’s rank order

correlation coefficient (SROCC), Pearson’s linear correlation

coefficient (PLCC) and root mean squared error (RMSE).

1http://staff.ustc.edu.cn/∼chenzhibo/resources.html



(a) (b) (c) (d) (e) (f)

Fig. 4: Reference images in SOLID database.

SROCC measures prediction monotonicity while PLCC and

RMSE measure the prediction accuracy. Higher SROCC,

PLCC and lower RMSE indicate good correlation with sub-

jective judgments. Before computing PLCC and RMSE, a

five-parameter logistic function is applied to maximize the

correlations between objective metrics and subjective scores

[5].

B. Performance Comparison

There are six reference images in the SOLID database, we

randomly split the database into 67% training and 33% testing

set according to the reference content as done in [24]. The

cross validation is performed 1000 times and we calculate the

median SROCC, PLCC and RMSE as performance measure-

ment.

TABLE I: PERFORMANCE EVALUATION ON THE SOLID

DATABASE [4].

Image Quality Overall QoE

Type Metric PLCC SROCC RMSE PLCC SROCC RMSE

2D IQA

PSNR 0.629 0.603 0.789 0.546 0.506 0.696
SSIM [11] 0.882 0.888 0.478 0.738 0.748 0.561

MS-SSIM [12] 0.773 0.755 0.643 0.645 0.620 0.635
FSIM [27] 0.889 0.883 0.465 0.747 0.748 0.552

2D OIQA
S-PSNR [19] 0.593 0.567 0.816 0.507 0.475 0.716

WS-PSNR [20] 0.585 0.559 0.823 0.499 0.470 0.720
CPP-PSNR [21] 0.593 0.566 0.817 0.506 0.475 0.716

3D IQA
Chen [30] 0.853 0.827 0.530 0.661 0.636 0.623

W-SSIM [28] 0.893 0.891 0.457 0.743 0.748 0.556
W-FSIM [28] 0.889 0.885 0.464 0.746 0.750 0.553

3D OIQA
SOIQE [26] 0.927 0.924 0.383 0.803 0.805 0.495

Proposed 0.939 0.928 0.351 0.935 0.925 0.294

We compare the proposed model with several parametric

2D/3D/360 IQA metrics and the PLCC, SROCC and RMSE

performance values are listed in Table I. For 2D metrics such

as PSNR, SSIM [11], MS-SSIM [12], FSIM [27], S-PSNR

[19], WS-PSNR [20], CPP-PSNR [21], the qualities of left and

right view images are averaged to obtain the final perceptual

score. The simple averaging operation cannot consider the

binocular properties of the HVS, thus their correlations with

human judgements are not very high. When taking binocular

model into consideration, some open source 3D metrics Chen

[30], W-SSIM [28], W-FSIM [28] are tested on the SOLID

database, but they also fail to predict the perceptual score of

3D 360 image because the characteristics of omnidirectional

images such as FoV and projection deformation are neglected.

We further compare our proposed model with stereoscopic

omnidirectional image quality evaluator (SOIQE) [26] which

is designed for SOIQA. The proposed model shows superior

prediction ability to SOIQE. The possible explanation is that

our proposed metric adopt a different binocular model and

utilize the powerful nonlinearity of SVR to map the qualities of

different viewports into a scalar value. Moreover, our proposed

method for QoE prediction outperforms the state-of-the-art

metrics by a large margin owing to the depth perception related

feature extraction. The scatter plots of MOS values versus the

predicted scores of the proposed model are drawn in Fig. 5 for

image quality and overall QoE to give clear and direct results.
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Fig. 5: Scatter plots of MOS against predictions by proposed

model on the SOLID database. (a) Image quality, (b) Overall

QoE.

C. Performance Evaluation for Symmetrical/Asymmetrical

Distortion

Symmetrically and asymmetrically distorted images both

exist in the SOLID database. The performance on asym-

metrical distortion are generally lower than those of sym-

metrical distortion as shown in Table II, since the binocular

fusion, rivalry and suppression may happen in asymmetrically

distorted images [1]. The proposed method performs best

on both symmetrically and asymmetrically distorted images

which demonstrates the effectiveness of the binocular model

in our algorithm.

TABLE II: PERFORMANCE EVALUATION FOR SYMMETRI-

CALLY AND ASYMMETRICALLY DISTORTED IMAGES ON

THE SOLID DATABASE [4].

Symmetrical Distortion Asymmetrical Distortion

Metric
Image Quality Overall QoE Image Quality Overall QoE

PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

PSNR 0.791 0.789 0.705 0.707 0.394 0.354 0.312 0.257
SSIM [11] 0.944 0.902 0.840 0.813 0.821 0.814 0.642 0.630

MS-SSIM [12] 0.869 0.836 0.761 0.736 0.631 0.615 0.477 0.460
FSIM [27] 0.930 0.890 0.833 0.805 0.853 0.847 0.662 0.659

S-PSNR [19] 0.805 0.766 0.681 0.682 0.364 0.313 0.361 0.222
WS-PSNR [20] 0.807 0.762 0.699 0.681 0.325 0.302 0.354 0.213
CPP-PSNR [21] 0.806 0.766 0.681 0.682 0.334 0.310 0.364 0.220

Chen [30] 0.944 0.890 0.814 0.743 0.767 0.700 0.522 0.434
W-SSIM [28] 0.944 0.902 0.840 0.813 0.834 0.832 0.643 0.638
W-FSIM [28] 0.930 0.890 0.833 0.805 0.845 0.842 0.652 0.658

SOIQE [26] 0.970 0.931 0.863 0.828 0.867 0.866 0.718 0.717
Proposed 0.977 0.914 0.962 0.953 0.920 0.879 0.916 0.902

D. Ablation Study

To verify the effectiveness of each part in our model, we

conduct the ablation study as demonstrated in Table III. From

this table, we can see that viewport sampling brings huge

improvement to the performance. Moreover, weighted aver-

aging according to the binocular model outperforms simply

concatenating or averaging the quality scores for both views.

In addition, we have tried several methods for computing

depth perception features, namely mean, standard deviation



and entropy of difference maps. Adopting entropy of the

viewport difference map shows the best result for overall QoE

prediction.

TABLE III: PERFORMANCE EVALUATION OF ABLATION

STUDY.

Image Quality Overall QoE

Methods PLCC SROCC RMSE Methods PLCC SROCC RMSE

w/o VS 0.889 0.885 0.464 VS+WQA 0.803 0.796 0.490
VS+QC 0.929 0.917 0.365 VS+WQA+DM 0.920 0.914 0.315
VS+QA 0.921 0.910 0.382 VS+WQA+DS 0.905 0.897 0.341

VS+WQA 0.939 0.928 0.351 VS+WQA+DH 0.935 0.925 0.294

1 VS denotes viewport sampling.
2 w/o VS denotes the 360-degree stereo image in ERP format.
3 QC, QA and WQA denote viewport quality concatenation, averaging

and weighted quality averaging.
4 DM, DS and DH denote the mean, standard deviation and entropy

of the viewport difference map.

IV. CONCLUSION

We propose a novel multi-viewport based stereoscopic om-

nidirectional image quality assessment metric by considering

the FoV and binocular characteristics of 3D 360 images.

It consists of the viewport sampling, binocular quality es-

timation, depth feature extraction and SVR regression. The

experimental results on the public SOLID database prove

the effectiveness of our method and it also outperforms

several state-of-the-art 2D/3D/360 IQA metrics. In addition,

it is shown that the proposed model is able to handle both

symmetrical and asymmetrical distortion since we take the

binocular properties of the HVS into consideration. Finally,

ablation study is conducted to verify the validity of each

component in our architecture.

ACKNOWLEDGMENT

This work was supported in part by NSFC under Grant

61571413, 61632001.

REFERENCES

[1] Z. Chen, W. Zhou, and W. Li, “Blind stereoscopic video quality assess-
ment: From depth perception to overall experience,” IEEE Transactions

on Image Processing, vol. 27, no. 2, pp. 721–734, 2018.
[2] T. Ebrahimi, “Quality of multimedia experience: past, present and

future,” in MM’09: Proceedings of the seventeen ACM international

conference on Multimedia. ACM, 2009, pp. 3–4.
[3] A.-F. N. M. Perrin, H. Xu, E. Kroupi, M. Řeřábek, and T. Ebrahimi,
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