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Abstract—Artificial intelligence (AI) is enabling the automated
analysis of large amounts of image/video data, boosting the speed
of multimedia data processing remarkably. Meanwhile, Image
Quality Assessment (IQA) plays an important role in developing
automatic analysis methods. To ensure the effectiveness of AI,
images in multimedia applications should be considered for
visual examination by both human and machine. Therefore, it
is significant to understand the differences between human’s
and AI’s perception of semantic distortion. However, little work
has been done due to the lack of data from human on the
semantic level. In this paper, we first propose a semantic database
(SID) based on the surveillance scenarios, by collecting subjective
average recognition rates of 3 semantic targets (face, pedestrian,
license plate) with 3 types of distortion (JPEG Compression,
BPG Compression, Motion Blur). Then, we present a detailed
analysis of how human and AI perceive semantic distortion
differently. Experimental results show that AI is stronger in
tolerance to distortion than human beings on average, while
weaker at generalization and stability. It is also implied in the
experiments that existing IQA methods are not effective enough
at judging the semantic distortion.

Index Terms—image quality assessment, image semantic anal-
ysis, image recognition, surveillance scenario

I. INTRODUCTION

Artificial intelligence (AI) is rapidly developing as substi-
tutes for human in areas such as classification, recognition
and categorization. Such high-level semantic tasks enable au-
tomatic analysis of large amounts of image/video data, which
extraordinarily enhances efficiency and effectiveness. While
developing these analysis methods, Image Quality Assessment
(IQA) metrics that simulate human judgments are widely used
for evaluation or guidance. However, inconsistency between
human judgments and AI can influence the performance of
these methods, such as haze removal [1]. Therefore, one
significant problem is to understand how human and AI
perceive semantic distortion differently.

Previous subjective quality datasets like LIVE, TID2013,
CSIQ, BAPPS generally focus on low-level quality judgments
such as Mean Opinion Score (MOS) [2]–[4], Two Alternative
Forced Choice (2AFC) or Just Noticeable Differences (JND)
[5]. However, low correlations between low-level perceptual
tasks and high-level semantic tasks have been demonstrated
on the BAPPS database [5]. Few databases are available yet
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to provide data on human perception in high-level recognition
tasks, which is essential to the problem.

In this paper, we establish the Semantic Database (SID)
to lay the foundation for investigating the perceptual differ-
ences between human and AI. Since human judgments are
highly context-dependent [5], we build the database based
on the surveillance scenarios so we can narrow down the
distribution of semantic information to specific targets, and
link semantic distortion to the accuracy of the corresponding
high-level recognition task. Surveillance cameras deployed in
public places like airports, college campuses or office buildings
provide huge amounts of video data for identity authentication
or suspicious activity detection. Since the position of the
camera is fixed and the background remains unchanged, it
is generally assumed that the majority of visual semantic
information lies in the high-value targets in the foreground.

Face, license plate, pedestrian are the most important tar-
gets, so we include a subset for each of them in the database.
As one of the most reliable and accessible biometric features,
face is significant for identity authentication concerning mil-
itary, finance, and public security. Previous works [6]–[13]
have boosted accuracy to above 99% on the most popular
benchmark Labeled Faces in the Wild, surpassing average
human accuracy of 97.53% [14]. License Plate Detection
[15]–[19] and Recognition [20]–[24] have various applications
in public security, traffic safety and commercial scenarios.
Person re-identification [25]–[28] is another fundamental task
in the automated video surveillance system, which is aimed
at establishing consistent labeling across multiple cameras to
recover disconnected or lost tracks.

We then apply three types of distortions in the database:
Joint Photographic Experts Group (JPEG) compression, Better
Portable Graphics (BPG) compression and motion blur. During
video shooting, transmission or storage, semantic information
in the video data are prone to degradation due to limitations of
resolution or exposure time, transmission errors and compres-
sion. JPEG compression is the most widely-used compression
format, and BPG compression is included as a representative
of the High Efficiency Video Coding (HEVC) standard. Mo-
tion Blur occurs when objects in the image changes during the
recording of a single exposure due to rapid movement, such
as vehicles driven at high speed.

Based on the proposed database, we conduct experiments
to seek insight into differences in the perception of semantic



distortion between human and AI. It is demonstrated in the
experiments that models have a remarkable advantage over hu-
man when high distortions are involved. However, models are
unstable when distortion is alleviated, which means they could
produce correct results for severe distortions but sometimes not
for the less severe. We also show that IQA metrics could not
reliably and efficiently measure the influence of distortions for
the aforementioned high-level recognition tasks.

In Section II, we describe the details of building the
Semantic Database. In Section III, we compare the perception
of semantic distortion between human and state-of-art models
and evaluate the performance of existing IQA methods. In
Section IV, we summarize the paper and inspirations for future
work.

II. SEMANTIC DATABASE

This section introduces the subjective experiment methods
of the semantic database. In order to measure the perceptual
differences between human and AI, we build SID which in-
cludes 100 reference face, pedestrian and license plate images,
respectively. The database will be published for future research
on semantic distortion.

A. Selection of Images

The semantic database SID contains three subsets: face,
pedestrian and license plate image set, each with 100 reference
images. Reference images for the face are collected from
LFW [14], and from Market-1501 [29] for the pedestrian. Two
images from the same identity are respectively used as the test
and template image as shown in Fig.1. Differently, license
plate images are selected from the Internet and the database
is built by ourselves.

(a) (b) (c) (d)

Fig. 1: Examples of test and template images in the face and
pedestrian subset. (a) Face template image. (b) Face test image.
(c) Pedestrian template image. (d) Pedestrian test image.

B. Distortion Processing
Recognition of the image content by human subjects is

disturbed when distortions are introduced. To imitate this
situation, three kinds of distortion are involved in the database,
including JPEG compression, BPG compression and motion
blur. JPEG is the most common compression method and BPG
can be regarded as a representative of the HEVC standard.
Both of them are chosen to simulate the artifacts induced
by compression. Motion blur is generated while there exists
relative motion between the camera and the object during
shooting. Since objects in the scene are usually moving when
photographing license plate or pedestrian images, motion blur
is introduced to simulate motion in real scenarios.

To investigate the relationship between distortion level and
recognition accuracy, the distortion parameters of 20 distortion
levels are carefully chosen as listed in Table I. The parameters
are capable of covering a quality range that corresponds to a
wide span of recognition accuracy. Image quality touches the
bottom when QP value equals 51 or quality parameter equals
1. However, there is no boundary for the maximum kernel size
of motion blur. Preliminary tests are conducted first to decide
the boundary of the kernel size at which subjects can hardly
recognize the content correctly.

C. Subjective Test Methods
During the subjective experiment, the subject is asked to

look at the distorted images and choose if he can recognize.
As shown in Fig.2, the answers can be divided into three
categories: cannot recognize, can recognize but wrong, can
recognize and right. Specifically, each subject can only see one
specific distortion type for each reference image since human
beings have memories. Otherwise, the subject can recognize
the content in the image even if it is blurry once he has seen
the clear version before, which violates the principle of the
experiment.

For the face subset, images pairs are manually divided
into 10 groups by appearance similarity: sports women, long
brown hair woman, long blonde hair women, short brown hair
women, short blonde hair women, sports men, black men, bald
man, brown hair men, and blonde hair men. Such grouping
is performed to enforce recognition from facial features rather
than gender, hairstyle or complexion. Similarly, the pedestrian
subset is divided into eight groups according to colors. As
for the license plate subset, subjects need to recognize the
entire license plate number sequence, including provincial
abbreviation, numbers and letters.

TABLE I: Distortion parameters of 20 distortion levels for different distortion types (Ref means the reference image)

Distortion level 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

BPG (QP) 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 30 20 10 Ref

JPEG (Quality) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 40 60 80 Ref

Motion blur
(Kernel Size)

Face 50 45 40 35 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 Ref

Pedestrian 30 20 18 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Ref

License 20 16 12 10 9 8 7.5 7 6.5 6 5.5 5 4.5 4 3.5 3 2.5 2 1 Ref



Fig. 2: Graphical interface of our experiment for face recog-
nition.

62 non-expert subjects aged from 21 to 49 take part in our
experiment. All participants pass the visual acuity and color
vision (Ishihara charts). In the formal test, every subject is
presented with three subsets including 300 image groups in a
random order. Each image group includes distorted versions
of the same reference image at 20 levels.

III. ANALYSIS OF SUBJECTIVE DATABASE

This section provides a detailed analysis of the subjective
results. First, outlier removal is performed to guarantee the
effectiveness of data collected from subjects. Second, the vari-
ations and consistency in recognition ability among subjects
are analyzed. Third, we explore the differences between human

beings and deep learning models. Finally, evaluation of some
objective image quality assessment metrics is performed on
the semantic database to see whether they are suitable for
measuring semantic distortion.

A. Outlier Removal

Before the subjective experiment, there were originally 110
reference images in each subset to leave a margin for weird
samples. Images too hard to recognize even clear or too easy to
recognize even distorted are removed to ensure the usability of
the semantic database, finally remaining 100 reference images
in each subset. Then, subjects with comparatively low accuracy
for reference images are also excluded. 60 subjects remain
valid after removal.

B. Variations and Consistency among Subjects

Recognition accuracy of an image is computed by averaging
results of valid subjects. The increase of distortion is expected
to have a loss of accuracy by the human being. According to
Fig.3, the recognition accuracy only starts to drop dramatically
when QP is greater than 35 and when quality is smaller than
15. Contrastly, for motion blur the decline of the accuracy is
much smoother but starts at a slight degree.

Average of the accuracy at each distortion level reflects
the consistency of subjects when identifying the images,
while maximum and minimum of the accuracy indicate the
discrepancy among them. To better illustrate the differences,
we draw the histogram for each subset and distortion type.
First, for each image, the distortion level at which the subject
begins to recognize correctly is recorded and addressed as the
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Fig. 3: Subjective recognition accuracy and threshold histograms for different distortions and subsets. (a-c) (g-i) (m-o): Average,
maximum and minimum subjective recognition accuracy. (d-f) (j-l) (p-r): Histograms of subjective recognition threshold



subjective recognition threshold. Then, average thresholds of
each person for each subset and distortion type are calculated.
Finally, histograms for average recognition thresholds of valid
subjects are obtained. Some conclusions can be drawn from
the histograms. Human can recognize clear images correctly,
however, tolerance for distortion varies from subject to subject
when distortion is introduced. The recognition threshold distri-
bution in the histograms approximate to Gaussian distribution,
with data mainly centralizing on moderate distortion levels. A
few subjects can recognize correctly even if the distortion is
severe, or cannot recognize until the images are clear.

C. Differences between Human and Deep Learning Models

In recent years, artificial intelligence shows extraordinary
ability in image recognition, generation, etc. But can artificial
intelligence really surpass human or what are the differences
between humans and models? We investigate the question
based on the proposed database.
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Fig. 4: Average recognition accuracy of humans and models

For each recognition task, we choose a state-of-art model
as the representative of AI, namely FaceNet [8], HyperLPR
[23] and Deep Person Re-Id [30]. The average recognition
accuracies for subjects and models are presented in Fig.4. We
can see that for face recognition and person re-identification,
deep neural networks surpass human by a large margin when
the distortion is severe and for license plate recognition, the
superiority is smaller. It means neural networks can better
deal with images with bad quality and give the right answer.
Furthermore, the drop points of models usually lag behind
those of subjects, which indicates neural networks have more
tolerance to image distortion. Also, as learned from subplots
for motion blur, neural networks are better at deconvolution
than human beings.

In Fig.4, the average accuracy of model for reference license
plates is lower than human. It can be explained that face
and pedestrian images are chosen from large public datasets
serving identification tasks so the state-of-art models have
already achieved high accuracies on these images. However,

the license plate image database is self-built so the CNN model
may have difficulty with generalization problems. Another
potential weakness of these models is instability. As the distor-
tion increases, the accuracy of models fluctuates occasionally,
whereas the accuracy of subjects decreases steadily.

D. Performance Evaluation of IQA Metrics

In a sense, recognition accuracy is similar to image quality
as they are both high for reference images and low for distorted
images. As a result, we evaluate some well-known objective
image quality assessment metrics with Linear Correlation
Coefficient (LCC) and Spearman Rank Correlation Coefficient
(SROCC) on our database. Higher coefficient means a better
correlation with subjective quality judgment.

The performance evaluation shown in Table II demonstrates
that existing metrics achieve better results on the pedestrian
subset, while seemingly not very effective for license plates. A
metric suitable for evaluation should at least yield correlation
coefficients higher than 0.9 [31]. However, we can learn from
the table that current IQA metrics are not appropriate to predict
the recognition accuracy of distorted images and it is possible
to propose a specific metric for measuring semantic distortion.

TABLE II: LCC and SROCC performance of objective image
quality metrics on our database

Face Pedestrian License plate All

SROCC LCC SROCC LCC SROCC LCC SROCC LCC

PSNR 0.7878 0.8061 0.8152 0.8505 0.7662 0.7660 0.7429 0.7622
SSIM [32] 0.8476 0.8586 0.8862 0.9060 0.7655 0.7570 0.7975 0.8188
VIF [33] 0.8720 0.8792 0.9112 0.9289 0.7168 0.7119 0.7946 0.8180
IFC [34] 0.8442 0.8515 0.9118 0.9248 0.6384 0.6303 0.7355 0.7514

FSIM [35] 0.8417 0.8549 0.8791 0.9041 0.8043 0.7979 0.8167 0.8031
BRISQUE [36] 0.7405 0.7511 0.6891 0.7081 0.4572 0.4681 0.5631 0.5849

IV. CONCLUSION

At an attempt to study how human and AI perceive se-
mantic distortion differently, we picked 3 specific targets
(face, pedestrian, license plate) and 3 distortion types (JPEG
compression, BPG compression, motion blur) based on the
surveillance scenario, and measure the semantic distortion
with the accuracy of corresponding recognition tasks. We then
propose the Semantic Database by collecting the subjective
recognition accuracy data. Results show that AIs have a
remarkable advantage over human against high distortion,
while for low distortion the situations differ from task to task.
It is also indicated that current IQA methods are incapable of
evaluating quality from the semantic perspective. Variations
among human participants and weaknesses of AI such as
instability and generalization ability are also discussed.

In the future, the effect of different distortion including com-
pression artifacts, additive noise like rain, haze and adversarial
examples would be a key point. For compression artifacts,
artificial intelligence is a notch above human. However, it may
be a totally different situation for adversarial examples. Since
these images are generated to fool machine learning systems,
human can easily recognize them but AI fails. Meanwhile, it
is urgent to put forward a new metric to measure the semantic
distortion for intelligent equipment.



REFERENCES

[1] Y. Pei, Y. Huang, Q. Zou, Y. Lu, and S. Wang, “Does haze removal help
cnn-based image classification?” in European Conference on Computer
Vision. Springer, 2018, pp. 697–712.

[2] H. Sheikh, “Live image quality assessment database release 2,”
http://live. ece. utexas. edu/research/quality, 2005.

[3] N. Ponomarenko et al., “Image database tid2013: Peculiarities, results
and perspectives,” Signal Processing: Image Communication, vol. 30,
pp. 57–77, 2015.

[4] E. C. Larson and D. Chandler, “Categorical image quality (csiq)
database,” 2010.

[5] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,”
in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[6] Y. Sun, D. Liang, X. Wang, and X. Tang, “DeepID3: Face Recognition
with Very Deep Neural Networks,” arXiv:1502.00873 [cs], Feb. 2015,
arXiv: 1502.00873. [Online]. Available: http://arxiv.org/abs/1502.00873

[7] F. Wang, X. Xiang, J. Cheng, and A. L. Yuille, “NormFace: L2
Hypersphere Embedding for Face Verification,” in Proceedings of
the 2017 ACM on Multimedia Conference - MM ’17. Mountain
View, California, USA: ACM Press, 2017, pp. 1041–1049. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3123266.3123359

[8] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A Unified
Embedding for Face Recognition and Clustering,” 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 815–823, Jun. 2015, arXiv: 1503.03832. [Online]. Available:
http://arxiv.org/abs/1503.03832

[9] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep Face Recognition,”
in Procedings of the British Machine Vision Conference 2015. Swansea:
British Machine Vision Association, 2015, pp. 41.1–41.12. [Online].
Available: http://www.bmva.org/bmvc/2015/papers/paper041/index.html

[10] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A Discriminative Feature
Learning Approach for Deep Face Recognition,” in LNCS, vol. 9911,
Oct. 2016, pp. 499–515.

[11] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song,
“SphereFace: Deep Hypersphere Embedding for Face Recognition,”
arXiv:1704.08063 [cs], Apr. 2017, arXiv: 1704.08063. [Online].
Available: http://arxiv.org/abs/1704.08063

[12] H. Wang et al., “Cosface: Large margin cosine loss for deep face
recognition,” arXiv preprint arXiv:1801.09414, 2018.

[13] J. Deng, J. Guo, and S. Zafeiriou, “ArcFace: Additive Angular Margin
Loss for Deep Face Recognition,” arXiv:1801.07698 [cs], Jan. 2018,
arXiv: 1801.07698. [Online]. Available: http://arxiv.org/abs/1801.07698

[14] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments,” University of Massachusetts, Amherst, http://vis-
www.cs.umass.edu/lfw/results.html#Human, Tech. Rep. 07-49, October
2007.

[15] Y. Yuan, W. Zou, Y. Zhao, X. Wang, X. Hu, and N. Komodakis,
“A Robust and Efficient Approach to License Plate Detection,” IEEE
Transactions on Image Processing, vol. 26, no. 3, pp. 1102–1114, Mar.
2017. [Online]. Available: http://ieeexplore.ieee.org/document/7752971/

[16] S. Yu, B. Li, Q. Zhang, C. Liu, and M. Q.-H. Meng, “A novel license
plate location method based on wavelet transform and emd analysis,”
Pattern Recognition, vol. 48, no. 1, pp. 114–125, 2015.

[17] A. H. Ashtari, M. J. Nordin, and M. Fathy, “An iranian license plate
recognition system based on color features,” IEEE transactions on
intelligent transportation systems, vol. 15, no. 4, pp. 1690–1705, 2014.

[18] D. F. Llorca et al., “Two-camera based accurate vehicle speed measure-
ment using average speed at a fixed point,” in Intelligent Transportation
Systems (ITSC), 2016 IEEE 19th International Conference on. IEEE,
2016, pp. 2533–2538.

[19] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and
alignment using multitask cascaded convolutional networks,” IEEE
Signal Processing Letters, vol. 23, no. 10, pp. 1499–1503, 2016.

[20] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet, “Multi-
digit number recognition from street view imagery using deep convolu-
tional neural networks,” arXiv preprint arXiv:1312.6082, 2013.

[21] S. Zherzdev and A. Gruzdev, “LPRNet: License Plate Recognition
via Deep Neural Networks,” arXiv:1806.10447 [cs], Jun. 2018, arXiv:
1806.10447. [Online]. Available: http://arxiv.org/abs/1806.10447

[22] “Openalpr,” http://www.openalpr.com.

[23] “Hyperlpr,” https://github.com/zeusees/HyperLPR.
[24] “Toward End-to-End Car License Plate Detection and Recognition

With Deep Neural Networks,” IEEE Transactions on Intelligent
Transportation Systems, pp. 1–11, 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8424450/

[25] R. R. Varior, M. Haloi, and G. Wang, “Gated siamese convolutional
neural network architecture for human re-identification,” in European
Conference on Computer Vision. Springer, 2016, pp. 791–808.

[26] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng, “Person re-
identification by multi-channel parts-based cnn with improved triplet
loss function,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 1335–1344.

[27] L. Zhang, T. Xiang, and S. Gong, “Learning a discriminative null space
for person re-identification,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 1239–1248.

[28] Y. Chen, X. Zhu, W. Zheng, and J. Lai, “Person Re-Identification by
Camera Correlation Aware Feature Augmentation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, no. 2, pp. 392–
408, Feb. 2018.

[29] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable
person re-identification: A benchmark,” in Computer Vision, IEEE
International Conference on, 2015.

[30] “Deep person re-id project,” https://github.com/KaiyangZhou/deep-
person-reid.

[31] S. Bosse, D. Maniry, K.-R. Müller, T. Wiegand, and W. Samek,
“Deep neural networks for no-reference and full-reference image quality
assessment,” IEEE Transactions on Image Processing, vol. 27, no. 1, pp.
206–219, 2018.

[32] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[33] H. R. Sheikh and A. C. Bovik, “Image information and visual qual-
ity,” in Acoustics, Speech, and Signal Processing, 2004. Proceed-
ings.(ICASSP’04). IEEE International Conference on, vol. 3. IEEE,
2004, pp. iii–709.

[34] H. R. Sheikh, A. C. Bovik, and G. De Veciana, “An information fidelity
criterion for image quality assessment using natural scene statistics,”
IEEE Transactions on image processing, vol. 14, no. 12, pp. 2117–2128,
2005.

[35] Z. Lin, Z. Lei, M. Xuanqin, and Z. David, “Fsim: a feature similarity
index for image quality assessment,” IEEE Transactions on Image
Processing A Publication of the IEEE Signal Processing Society, vol. 20,
no. 8, p. 2378, 2011.

[36] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image
quality assessment in the spatial domain,” IEEE Transactions on Image
Processing A Publication of the IEEE Signal Processing Society, vol. 21,
no. 12, p. 4695, 2012.

View publication statsView publication stats

https://www.researchgate.net/publication/332813602

