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Abstract—Infrared pedestrian detection aims to detect persons
in outdoor thermal images. It shows a unique advantage in
dark environment or bad weather compared to daytime visible
images (the RGB image). Most current methods treat infrared
detection the same way as with visible images, e.g. regarding the
infrared image as a special gray-scale visible image. In this paper,
we tackle this problem with more emphasis on the underlying
temperature information in infrared images. We build an image-
temperature transformation formula based upon infrared image
formation theory, which can convert infrared image into temper-
ature map with the prior of pedestrian pixel-temperature value.
The whole detection process follows a two-stage manner. In the
first stage, we use a common detector which treats the infrared
image as the gray-scale visible image to provide primary detection
results and a pedestrian position prior (the highest-confidence
pedestrian detection box in each image). In the second stage, we
convert infrared images into corresponding temperature maps
and train a temperature net for detection. The final results consist
of both the primary detection and the temperature net outputs,
detecting pedestrians with characteristics in both image and
temperature domain. We show that the converted temperature
image is less affected by environmental factors, and that its
detector shows amazing complementary ability with the primary
detector. We carry out extensive experiments and analysis on
two public infrared datasets, the OTCBVS dataset and the
FLIR dataset; and demonstrate the effectiveness of incorporating
temperature maps.

I. INTRODUCTION

Infrared pedestrian detection [1][2][3] has become an aris-
ing research hot-spot these years as the infrared images have
unique advantages, e.g. specialty in heat feature representation,
high robustness to bad conditions, etc. We show some exam-
ples of differences between infrared images and visible images
in Figure 1, illustrating that infrared images are naturally better
at handling occlusion, dark light, and spoofing compared with
visible ones. Infrared pedestrian detection is widely used in
numerous practical applications, such as autonomous driving
[?][4][5], video surveillance [6][7][8], night vision [9][10][11],
and navigation [12][13][14]. However, it still remains a chal-
lenging task, for the real-world infrared images endure all
kinds of environmental influences, and can be of low-quality
or with cluttered information. In this paper, we propose a
novel infrared pedestrian detection model which relieves the
impact of external factors by emphasizing on the extracted
temperature information.

Numerous methods have been developed in the field of

Fig. 1. An illustration of differences between infrared and visible images.
This figure gives some examples for visible RGB-scale, visible gray-scale,
and infrared images taken under the same conditions, i.e. with light pollution,
bad weather, severe occlusion, and darkness. We can see that visible images
may show more details, while infrared ones are more temperature-sensitive,
and more robust to bad conditions.

infrared pedestrian detection. They can be broadly categorized
into traditional models and deep models. Traditional models
[2][3][15] incorporate elaborately-designed hand-crafted fea-
tures (e.g. Local Binary Patterns, LBP [16] and Histograms
of Gradients, HOG [17]) and common classifiers (e.g. SVM
and Bayesian classifier) to find and recognize pedestrian areas
in infrared images. They usually follow a similar detection
pattern: region proposal, region feature extraction, region clas-
sification and post-processing. First, the region proposal step
generates hundreds of thousands of candidate regions, then the
feature extraction step depicts candidate regions with well-
designed image descriptions, afterwards a specific classifier
classifies them into ”person” or ”non-person”, where the
”person” boxes go through a post-processing method (e.g. the
Non-Maximum Suppression algorithm, NMS) and come to the
final detection outputs. In contrast to traditional models, deep
models [18][19][20][21][22][23][24][25] automatically learn
the image high-level abbreviations from large-scale annotated



Fig. 2. Overall pedestrian detection framework. This figure shows our overall detection framework. The original infrared image first goes into a primary
detector (a detection network trained in the gray-scale visible image pattern); then the image is transformed into the corresponding temperature map according
to the primary detection result and the proposed transformation function; after that, a temperature network is trained to detect pedestrians via their temperature
characteristics. In the final stage, detection results from both the primary detector and the temperature net are combined as the algorithm output.

datasets. They use convolutional neural networks (CNN)[26]
whose parameters are mined from big data to replace the
traditional hand-crafted descriptions in the detection proce-
dure, and show overwhelmingly better performance than the
traditional models. Moreover, deep models manage to fuse the
separate detection steps into a unified framework. For example,
the Fast-RCNN [27] detection model utilizes spatial pooling
strategy to enable candidate regions to share computation
of convolutional layers, speeding up the detection procedure
by over a hundred times. And the Faster-RCNN framework
[28] takes a step forward by replacing the region proposal
step with an RPN (region proposal network) which can be
trained simultaneously with the overall detection net. In this
work, we use a detection module like Faster-RCNN, where
the whole process is modeled into one unified, end-to-end
trainable network.

We find that both traditional and deep models treat infrared
images like gray-scale visible images. This may introduce
erroneous cognition for that the pixel values in infrared
images do not contain the same kind of information as visible
ones. The difference between infrared images and gray-scale
visible images can be seen in Figure 1: the gray-scale images
contain detailed human texture information but share the same
vulnerability as RGB images, while the infrared images show
heat distribution under a certain condition and can intuitively
distinguish living beings. Therefore, methods dealing with

infrared images the same way as visible ones fail to make
full use of their unique thermal information. Based on this
observation, we propose that the inherent temperature message
should be emphasized more in infrared detection. In this paper,
we extract the temperature map from the infrared image, and
detect pedestrians upon the clean and normalized temperature
image as a supplementary to common detectors. We show that
the proposed detection framework is thermally sensitive, and
has better robustness and recognition ability than algorithms
dealing with infrared images only in the same way as gray-
scale visible ones.

Overall, our main contributions are three-fold.
1) We manage to extract the original temperature map from

infrared images regardless of external influences.
2) We construct a powerful and robust detection module for

general infrared pedestrian detection.
3) We improve performance from a common detector by a

large extent with help the our temperature net.

II. TEMPERATURE-SENSITIVE INFRARED PEDESTRIAN
DETECTION

In this section, we introduce the details of our infrared
pedestrian detection model, including the network structure,
infrared to temperature transformation formula and the imple-
mentation details.



Fig. 3. Illustration of infrared images taken under different environmental
conditions. This figure provides three examples of infrared images taken with
different environmental factors. w, d, h, v, p, UV denote the environmental
factors of weather, dew point, humidity, visibility, pressure and UV index,
respectively (as presented in Equation 2). We show the converted temperature
maps with pedestrian areas enlarged on the left. Comparing with original
infrared images, temperature maps are cleaner and show more pixel value
similarities in pedestrian areas. This validates our idea that temperature maps
contain more purified and unified thermal information that may help the
pedestrian detection.

A. Network Structure

The main detection network follows the structure of Faster
R-CNN [28], where candidate regions are proposed by an RPN
(Region Proposal Network) which shares the convolutional
features with the classification head that categorizes candidate
regions and regress to optimal positions. We choose ResNext-
101 network [29] as the basic body net for its effectiveness
and efficiency in both training and testing (the superiority
of ResNext-101 has been validated by a number of works
[30][31][32][33][34][35][36][37][38]). This network has five
large blocks, each consisting of analogical groups of con-
volution operations. Figure 2 shows the architecture of our
detection network, where rich features for region proposal and
classification are extracted from multiple blocks, i.e. Conv3,
Conv4, and Conv5. We set the prediction class to be binary:
”pedestrian” or ”non-pedestrian”. During training, the network
is optimized with the region proposal loss and classification
loss, each consisting of a Cross-Entropy loss for classification
and a Smooth-L1 loss for bounding box regression.

B. From Infrared Image to Temperature Map

The key point in the proposed framework is to extract the
temperature information from infrared images with discrete
pixel values (0, 1, ... 255). The intuitive idea is that pixel
values may be proportional to temperature, which, is proved
to be otherwise as shown in Figure 3. It clearly illustrates
that a certain pixel value in infrared images does not directly
correspond to a certain temperature value.

In order to get the relationship between pixel values and
temperatures, we go back to the infrared image formation prin-

ciples. Infrared images are obtained by non-contact devices
which detect and convert infrared radiations into electronic
signals (quantified to pixel value for display). As introduced
in [39], this radiation energy to pixel value transformation
is proportional (we verify this on the OTCBVS dataset in
Figure 4). The radiation energy that reaches the infrared
device should be an environmentally-degraded version of the
original thermal energy generated by heat-sources. Because
the environmental factors that influence infrared images are
complicated, infrared images may show different distributions
for the same temperature. We propose that however complex
environmental factors are, they stay the same within the same
image. Therefore, pixels in the same picture should have the
same proportion factor to the original thermal radiation, which
we crudely approximated with the black-body radiation (the
Stefan-Boltzmann law). The Stefan-Boltzmann law shows that
the radiation coming out of a black-body per unit area is
proportional to the biquadrate of its absolute temperature:

R(T ) = σT 4, (1)

where T denotes the absolute temperature of the black body,
R(T ) denotes its per-unit radiation, and the proportionality
coefficient σ is a constant value. Based on Equation 1, the
pixel values in an infrared image can be expressed as:

I(x, y) = F(Tx,y|w, d, h, v, p, w, UV )

= R(Tx,y) ∗ E(w, d, h, v, p, w, UV )

= σT 4
x,y ∗ E(w, d, h, v, p, UV ), (2)

where w, d, h, v, p, UV denote the environmental factors that
may affect the transmission coefficient, i.e. the weather, dew
point, humidity, visibility, pressure and UV index. Note that
for the pixel positions (x, y) locating in the same infrared
image with pixel value I(x, y), the environmental factors
should be fixed, and then there is I(x, y) ∝ T 4

x,y . Consider
human beings as constant-temperature entities with the mean
body temperature of Tp = 37.2◦C = 310.35K. Then the mean
pixel value Ip for person areas in an infrared image can be
used as an anchor point to calculate the temperature map T .

T (x, y) = (I(x, y) ∗ T 4
p /Ip)

1/4 − 273.15, (3)

where Tp is fixed to be the average human body temperature
of 310.35K and Ip can be computed in each testing image
using the primary detection as prior. Figure 3 shows some
examples of our computed temperature maps and their cor-
responding infrared images. With Equation 3, we are able to
transform infrared images under various conditions into unified
temperature maps. We prove that these temperature maps can
help describe pedestrians from a novel aspect, improving the
overall detection performance. During training, we calculate
the temperature maps with annotations: computing Ip by
averaging over all labeled pedestrian areas. During testing, we
use a primary detector to extract its most confident pedestrian
box in each image for the human pixel-value prior (Ip).



C. Infrared Pedestrian Detection

We show our overall detection framework in Figure 2. In
total, there are two detection stages.
Stage I: Primary Detection. To obtain the temperature map
on a test image, we first need to know at least one pedestrian
position as prior. In this work, we use a primary detector to do
this. This primary detection network has the same structure as
the temperature net, only that it treats infrared images the same
way as gray-scale visible images during training and testing.
We test the accuracy of its most-confident detection box on the
whole test set of FLIR dataset. The high precision (97.96%) for
its most-confident detection proves that the primary detector
is capable of providing pedestrian pixel value (Ip).
Stage II: Temperature Map Detection. With the confident
detection box (bbox = [x0, y0, w, h]) which is considered
as human area, we are able to obtain the corresponding
temperature map of the test image with Equation 3 and the
Ip value:

Ip =

x+w∑
x=x0

y+h∑
y=y0

I(x, y)/(w ∗ h). (4)

Based on the computed temperature map, we train a tem-
perature net to re-recognizes pedestrian areas with a more
clean form of temperature information, e.g. mean human body
temperature fixed to a constant value, relieving influence of
environmental variables.

After stage II, we fuse the results from both stages as the
final detection. We validate that both stages have its role and
that the temperature net largely boosts the overall performance
in Section III-C.

D. Implementation Details

During training, we augment images from the training set of
the FLIR dataset [40] via flipping. For the primary detector, we
regard infrared images as gray-scale visible images, train the
network with Stochastic Gradient Descent (SGD) optimizer,
each batch containing one image and 128 regions of interest.
For better initialization, the network is pre-trained on the
COCO dataset for object detection task. We set the initial
learning rate to be 1e-3 and decrease by half every 30’000
iterations for a total of 90’000 iterations. For the temperature
net, we train on converted temperature maps of the training
images, with the same SGD optimizer and the batch size of one
image and 128 regions. This time, we initialize from weights
of the primary detector, and train with a learning rate of 1e-
4 for 30’000 iterations. The whole process is carried out on
one TitanX GPU with 12G memory, and it takes 9 hours
and 3 hours for training primary and temperature detector,
respectively.

III. EXPERIMENTS

We carry out extensive analysis and experiments on the
OTCBVS [41] dataset and the FLIR dataset [40] to validate
the proposed algorithm.

Fig. 4. Data distribution on the OTCBVS dataset. Figure (a) shows the average
pixel value for pedestrian (red) and background (blue) areas, respectively.
Figure (b) presents the environmental factors with numerical values in the ten
capture sessions (bars from left to right represent the environmental factors of
air temperature, UV index, dew point, humidity and visibility, respectively).
Figure (c) illustrates the fitted curve for averaged pixel value versus the
biquadrate of the absolute air temperature.

A. Database and Evaluation Metric

The FLIR dataset [40] is a recently proposed (in June,
2018), large-scale infrared dataset for autonomous driving.
Its images are taken from scenes of real-world driving sit-
uations (day and night), including annotations for common
road objects like pedestrians, cars, bicycles, dogs and etc.
The images are of resolution 640 x 512, with a manually-
labeled bounding box and category identity of each object,
but have no annotations for environmental factors. We choose
the class of pedestrian in this dataset to train and test our
detection network. In total, we use 5’838 images with 22’372
pedestrians as training set and 1’206 images with 5’779
pedestrians as test set.

The OTCBVS [41] dataset contains 284 challenging in-
frared images from 10 capture sessions (taken in several
days, morning and afternoon, three under rainy weather). The
images are with a unified resolution of 360 x 240, taken from
a university campus walkway, and have an average of 3-4
persons per image. Each pedestrian is manually labeled with
a tight bounding box, and each image has the annotations for
a wide range of environmental conditions, i.e. the weather,
humidity. We use this dataset to validate our temperature
formula (Equation 3), and show that the temperature maps
relieve environmental impacts on infrared images. We directly
apply our detection network (without fine-tuning) on the
OTCBVS dataset to validate the robustness of the proposed
method.

We evaluate all our methods with a commonly-used crite-
rion in detection: the precision-recall curve, where detection
box that has IoU (intersection over union) larger than 0.5 with
ground-truth box is regarded as true positive detection. We also
compute the AUC (area-under-curve) value for each precision-



TABLE I
ABLATION STUDY. THIS TABLE SHOWS THE PERFORMANCE OF THE

PROPOSED METHOD WITHOUT TEMPERATURE NET (-TNET), WITHOUT
ADDING BACK PRIMARY DETECTION BOXES (-PRIDETS), AND THE

PRIMARY DETECTION WITHOUT PRE-TRAINING ON THE COCO DATASET
(-TNET-COCO). AUC , P AND R DENOTE THE AREA UNDER CURVE,

PRECISION AND RECALL VALUES FOR THE OPTIMAL FSCORE POINT (SEE
DETAILS IN SECTION III-C), RESPECTIVELY.

OTCBVS FLIR
AUC P R AUC P R

Ours (final) 0.926 0.946 0.814 0.866 0.828 0.812
- TNET 0.888 0.882 0.793 0.823 0.796 0.770
- PRIDETS 0.847 0.907 0.736 0.674 0.786 0.574
- TNET
- COCO 0.791 0.990 0.587 0.787 0.729 0.737

TABLE II
COMPARISON WITH METHODS ON THE OTCBVS DATASET. NOTE THAT

#HUMAN, #TP AND #FP DENOTE THE NUMBER OF PEDESTRIANS, TRUE
POSITIVE DETECTION BOXES AND FALSE POSITIVE DETECTION BOXES,

RESPECTIVELY.

No. #Human #TP #FP
[42] [43] Ours [42] [43] Ours

1 91 88 90 77 0 0 3
2 100 94 95 99 0 0 2
3 101 101 101 64 1 1 90
4 109 107 108 107 1 0 7
5 101 90 95 97 0 0 16
6 97 93 94 92 0 0 8
7 94 92 93 78 0 0 8
8 99 75 80 89 1 1 8
9 95 95 95 91 0 0 4
10 97 95 95 91 3 3 18

recall curve for comparisons.

B. Data Analysis

In this section, we analyze the environmental factors in the
OTCBVS dataset to better illustrate our motivation of using
temperature map in detection.
Environmental factors. As the OTCBVS dataset has images
from 10 capture sessions; each session contains labels for
some environmental factors, like the weather, humidity, etc.
We show the numerical ones with a histogram in Figure 4
(b), where bars from left to right in the same session denote
the environmental factors of air temperature, UV index, dew
point, humidity and visibility, respectively. To testify that the
infrared images are largely affected by these environmental
factors, we compute the average pixel value in each image of
these 10 sessions. As illustrated in Figure 4 (a), each image is
represented by a pair of red and blue points, whose values are
the averaged pixel value for pedestrian area and background
area, respectively. Note that we managed to align Figure 4
(a) with their session conditions in Figure 4 (b). We can see
that images in the same session tend to have similar mean
background value, which may be related to their common air
temperature. However, images in different sessions appear to
have diverse distributions, e.g. the pedestrian and background
values are sometimes wide apart and sometimes mixed up, and
both of them do not sting to keep to fixed values. This accords
with our observation that infrared images are influenced by

Fig. 5. Precision-recall curves. This figure shows the detailed precision-recall
curves for different ablation settings as explained in Table I.

external environmental factors, and therefore their pixel values
do not directly represent temperatures.
Temperature versus pixel value. To validate that infrared
pixel values are proportional to the overall radiation which
can be calculated with Equation 1, we explore the correlation
between the biquadrate of absolute air temperature and the
mean pixel values in ten sessions of the OTCBVS dataset. As
shown in Figure 4 (c), we draw a linear fitted curve for these
two values. We can see that most data points are near the
fitted curve, validating the linear relation for infrared image
pixel values and the absolute temperature.

C. Infrared Pedestrian Detection

We carry out an ablation study on the FLIR dataset and the
OTCBVS dataset. Note that our networks are trained on the
FLIR training set and directly tested on the whole OTCBVS
dataset along with the FLIR test set. We compare the final
detection performance with ablation settings of:
- TNET: results from the primary detector without incorporat-
ing the temperature net;
- PRIDETS: final results without adding back the primary
detector outputs;
- TNET & - COCO: results from the primary detector trained
with ImageNet classification weights instead of COCO object
detection.

Table I shows the evaluation results for these settings in
form of AUC (area under the precision-recall curve as shown
in Figure 5) and the optimal pair of precision-recall values (P
for precision and R for recall) chosen by maximum the F-
score (F = 2PR/(P +R)). We can see that on the OTCBVS
dataset, temperature net alone has better performance than the
primary detector; while on the more complicated FLIR dataset,
primary detector is better at finding persons. This shows that
the primary detector which treats infrared images as gray-scale
visible images and the temperature net which is temperature-
sensitive specialize in different cognition domain, and that they
can complement each other in infrared recognition tasks. The
removal of COCO pre-training costs severe loss of AUC on
both datasets. This may be due to that the COCO dataset
provides a large amount of object detection level annotations
and can induce the network to learn strong features with
detection priors. On both datasets, the final detection result
consistently outperforms any ablation setting, demonstrating



that each part of our proposed framework is significant.
Detailed precision-recall curves are drawn in Figure 5. It
illustrates the precision-recall trade-offs during detection; it
also shows that the proposed method can achieve high recall
(about 95%) or high precision (99% or so) for different needs.

We also compare our results with state-of-the-art methods
on the OTCBVS dataset [42], [43] in terms of true positive
detection number and false positive detection number in each
session. Table II shows the overall comparison. We notice
a failure in session 3 whose temperature distribution varies
a lot from others. Overall, the proposed method performs
competitively with methods designed for the OTCBVS dataset,
demonstrating its robustness. Although we do not train the
network on the OTCBVS dataset, our method still has the
best ability at finding pedestrians in some sequences.

IV. CONCLUSIONS

In this paper, we propose a novel infrared pedestrian de-
tection framework which places emphasis on the temperature
information. To extract temperature information from infrared
images, we establish an infrared-temperature transformation
formula which can approximately convert the original infrared
image into a unified temperature map with the help of a
primary pedestrian detection box. We show that the trans-
formed temperature maps relieve environmental impacts and
better reveals the heat-source information than the original
infrared image. We also show that the temperature information
recognizes infrared images from a new aspect, and boosts
the overall performance. We demonstrate the effectiveness
of our proposed detection module on the FLIR dataset and
show its robustness and general applicability on the OTCBVS
dataset. In addition, we propose that our infrared-temperature
transformation formula can be easily adapted and applied to
other infrared-related tasks.
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