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Abstract. Due to hardware limitations, existing light field (LF) captur-
ing devices cannot offer sufficient field of view for building 6 degrees of
freedom (6 DOF) VR applications. LF image stitching methods can be
used to address this problem. The state-of-the-art LF stitching methods
highly depend on the stitching accuracy of center view which is essen-
tially a 2D image stitching task. However, conventional 2D image stitch-
ing methods usually suffer from the ghosting artifacts. In this paper, a
None Ghosting Artifacts (NGA) stitching method is proposed to tackle
this problem. We theoretically reveal the intrinsic cause of the ghosting
artifacts and then further verify that different depth scenes require dif-
ferent homography matrices for warping. Therefore, the clustered depth
map is employed to segment the scene into several layers, and the layer-
specific homography matrix is computed for warping. An interpolation
mechanism is also proposed to ensure that each layer has its own trans-
formation. Compared with state-of-the-art stitching methods aiming to
alleviate ghosting artifacts, experimental results show that the proposed
method not only stitches images without ghosting artifacts, but also
achieves realistic perspective transformation.

Keywords: Ghosting artifacts · Depth map · Image stitching · Light
field stitching.

1 Introduction

A light filed (LF) consists of a large collection of rays that store radiance in-
formation in both spatial and angular dimensions [6]. With extra angular light
information, the LF can provide 6 degrees of freedom (6 DOF) experience. It is
considered as a promising technique for future immersive multimedia applica-
tions, such as 3D TV and virtual reality (VR) applications.

LF can be captured by camera arrays or lenslet LF cameras, e.g. Lytro [9].
Both the camera array and lenslet camera cannot provide sufficient filed-of-view
(FOV) for building the 6 DOF VR applications. In order to introduce the LF
techniques into the market successfully , it is urgent to stitch the LF captured
by multiple perspectives. A 6 DOF panoramic VR scene can be constructed by
stitching the sub-views of multiple LF images.
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Many research works have been carried out for LF stitching. [6, 7, 1] represent
the LF as a 4D function and extend 2D image stitching algorithms to stitch
LF in 4D dimension. However, they suffer from the high complexity caused by
high data dimensions. [2] essentially stitches the LF in the frequency domain,
which converts 4D plenoptic data to 3D focal stack before stitching and thus
is limited to Lambertian scenes. The state-of-the-art method [3] represents the
LF images as views array and stitch the center view with 2D stitching method.
Then the stitching operation is propagated to other views. The method is based
on propagation and robust for different scenes and devices.However, they suffer
from the ghosting artifacts, which is an intrinsic drawback of conventional 2D
image stitching. Solving the ghosting artifact is our motivation for this paper.

When the captured scene contains a relatively larger depth range, there will
exist a large parallax between the adjacent images. In this case, traditional 2D
image stitching will result in severe ghosting artifacts. Despite blending and
feathering methods are exploited for to de-ghost, a good initial stitching can
not only extremely improve the results, but also impose a much lower require-
ment on subsequent de-ghosting and post-processing, especially for the large
parallax condition. [10, 5, 8, 11] all aimed to optimize the initial stitching, but
none of them attempted to investigate the essence of the ghosting artifacts and
thoroughly solved this problem.

In this paper, we first prove that the essential cause of the ghosting artifacts
is that pixels at different depth planes need their own transformation matrix.
Fortunately the depth information can be estimated from the LF image. There-
fore, we propose a none ghosting artifacts (NGA) stitching method based on the
depth map. We first use the well-known k-means algorithm to cluster the depth
map of central view. Then we segment the scene into several layers with the
depth map. Finally, different scene layers are transformed with their own homo-
graphies, which are computed by the matching feature points belonging to each
depth plane with RANSAC algorithm. Considering that some depth planes may
not have enough matching points to obtain an accurate enough transformation,
we use a camera parameter based interpolation to ensure each layer has its own
homography matric.

Our contributions is in the following three aspects:

1). We theoretically point out the reason of ghosting artifact;

2). We propose the NGA stitching algorithm for the center view of LF images;

3). We propose an interpolation mechanism to make NGA more robust.

The rest of the paper is organized as follows: Section 2 surveys related work.
Sec-tion 3 introduces our proposed method NGA. Experimental results are pre-
sented in Section 4, and we conclude our work in Section 5.

2 Related work

Our work is related to LF stitching and 2D image stitching. In this section, we
review both them in the follows.
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Fig. 1: Framework of the NGA stitching model. I1 and I2 denote the central view
of two LFs respectively. D2 denotes the depth map of I2. The red box in the
figure represents depth map clustering, the green box represents homography
calculation, and the blue box represents layer-specific transformation.

2.1 LF stitching

As mentioned in section 1, we divide the existing LF stitching algorithms into
three main categories as follows:

Stitching in ray space. This category [6, 7, 1] considers the transformation of
LF images in the ray space. [6, 7] first find the matching rays, and then use a 5x5
transformation matrix to stitch LF images. These methods have a large amount
of calculation due to the high dimensionality of the ray transformation matrix.
[1] proposes to adopt the re-parameterization with double cylinders to handle
different complex scenes. However, it requires highly accurate camera calibration
and camera control, which is hard to satisfy in practice.

Stitching with focal stack. This category [2] generates panorama LF by first
converting input LF images into focal stacks. Then they stitch these focal stacks
and convert the resulting panorama focal stack into a LF using linear view
synthesis. These method will fail in non-Lambertian scenes which loses the ad-
vantages of light-field imaging in general.

Stitching based on multi-view. The methods based on multi-view represent
the LF images as view arrays. A general framework is established in [3], which
propagates arbitrary spatial deformations operated in the center view to all
other perspective views consistently. Once this method is used to stitch LF
image, which may first stitch the center view with 2D stitching method, and
then propagate the operation to other views without destroying the disparity
consistency.

By comparing existing LF stitching algorithms, it shows that[3] has faster
stitching speed and has a lower requirement for camera control accuracy. Ob-
viously, such method will be highly affected by the 2D stitching. Thus, It is
desirable to optimize the 2D image stitching.
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2.2 2D image stitching

A classic 2D stitching model was proposed in [4], which first extracts feature
points, then matches the feature points, and finally calculates a global homog-
raphy to fit the matched feature points. However, this model have two limited
conditions: (1) the scene of image is planar or (2) the views differ purely by ro-
tation [10]. But in practice, the two assumptions are hard to satisfy, and hence
there will generate obvious ghosting artifacts and misalignment due to parallax.
By assuming that the scene contains a ground plane and a distant plane, [5]
proposed dual homography warps for image stitching. Essentially [5] is a spe-
cial case of a piece-wise projective warping, which is more flexible than using
a single homography. But it is not robust for complex scenes. In [8], multi-
ple affine transformations are used to make more precise local alignment. [10]
replaces local affine transformations in [8] with local homography transforma-
tions, which makes local adaptation much better. A simple moving Direct Linear
Transformation (DLT) method in [10] is used to estimate the local parameters,
by providing higher weights to closer feature points and lower weights to the
farther ones. However, once the local mesh is at the boundary of the objects,
it is impossible to ensure those closer feature points belong to the same depth
plane. For better stitching, Content-preserving warps (CPW) in [11] combine the
global transformation with the block based warping. Therefore,those methods
can only alleviate but not absolutely avoid the ghosting artifacts. In the next
section, we point out the essential reason for ghosting artifacts and shows that
the proposed NGA can solve this problem.

3 None Ghosting Artifacts Stitching

In this section, we first point out that each depth plane corresponds to a specific
homography matrix. That is why the conventional algorithms always produce
ghosting artifacts. Further, we derive the relationship between the homogra-
phies of different depth planes. Based on these analysis, we proposed our NGA
stitching method.

3.1 3D Warping Function

The relationship between a 3D point M and its image projection m is given by
[12].

sm̃ = ARM + At , with A =

α γ u00 β v0
0 0 1

 , (1)

where s is the depth of a 3D point, and A is the intrinsic matrix of the camera.
R and t denote the camera rotation and translation, respectively. We use ∼ to
denote the homogeneous coordinates of m.
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We can consider two cameras conditions. then the projection of point M are
denoted by m1 and m2. The relationship between them can be derived as [12]

s2m̃2=s1ARA−1m̃1 + At. (2)

When capturing the LF panorama, the camera may have two kinds of movement,
i.e. the translation and rotation. To simplify the derivation, we separate the two
conditions. If we consider translating only, there should be s2 = s1 = s , R = E
,where E is an indetity matrix. the equation (2) can be simplified as

m̃2 = m̃1 +
At

s
, (3)

where t = (tx, ty, 0)T . The equation (3) can also be written as

m̃2 = Hm̃1 , with H = E+
At

s
, (4)

It shows that H in equation (4) is only decided by the depth. Thus, it is rea-
sonable to use different homography for different depth layers. Further, the re-
lationship between the homographies of different depth planes can be expressed
as

H2 =
s1
s2

(H1 − E) + E, (5)

where s1 and s2 are different depth values, and H1 and H2 is the homgraphy
correspond to s1 and s2, respectively.

If only the rotation is considered, we have t = (0, 0, 0)T , s2 ≈ s1, the equation
(2) can be simplified as

m̃2 = Hm̃1 , with H = ARA−1. (6)

We can find that H is not related to depth in this case. However, actually a pure
rotation is nearly impossible because the main lens cannot be treated a point.
This means the second term in equation (3) will affect the translation.

Now we conclude that if we want to align two projection pixel, we need to
calculate the transformation based on the depth value, and different depth plane
should have its own matrix. This is the reason that conventional work always
produce misalignment and introduce ghosting artifacts.

3.2 Component of NGA

Based on the above analysis, we propose the None Ghosting Artifacts (NGA)
stitching model. As shown in Fig. 1, the proposed model consists of three key
parts : depth plane clustering, homography calculation, and layer-specific trans-
formation.
Depth plane clustering. According to the theoretical derivation, each differ-
ent value in the depth map corresponds to a different homography. However,
calculating homography for all depth values is time-consuming. Also for some
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Fig. 2: The homography calculation.

depth values there may be not enough feature points for calculation. Moreover
the estimated depth maps are usually noisy. Therefore, we cluster the depth
map by K-means algorithm. The K value is determined by Calinski-Harabasz
criterion.
Homography calculation. This part is shown in Fig. 2. For input images I1
and I2, the SIFT feature points are extracted and matched. For each depth layer,
we count the feature points locating within it. If the num of feature points is
more than a threshold Nfp , we calculate its own homography transformation
by RANSAC algorithm; otherwise we obtain the transformation matric by our
interpolation method, which is detailedly described in Section 3.3.
Layer-specific transformation. Due to I2 is transformed to I1,we first seg-
ment I2 into several layers by the clustered depth map. Then we perform the
corresponding transformation on each layer. The layers are merged by depth
order, i.e. the farthest layer is put first and so on. It is noticeable that the
post-processing methods, like blending or feathering can be used for any other
algorithms. Thus, we do not adopt them to help fairly comparing.

The process of Layer-specific transformation is shown in Fig. 3. Due to the
segmentation and layering operations, each depth plane monopolizes a differ-
ent transformation. Thus the stitching results can achieve realistic perspective
conversion.

3.3 Interpolation module

The significance of this module is to make up for the unstability of the homogra-
phy calculation in the NGA framework under certain circumstances. There are
two special cases that make it hard to obtain accurate homographies of some
depth layers. On the one hand, the matched feature points exist only in the
overlapping areas of the I1 and I2, which can result in the fact that some depth
planes may not have matched feature points, such as the non-overlapping area
in I2 exists a depth plane that does not exist in the overlapping area, so that
homography of this depth plane cannot be calculated. On the other hand, some
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Fig. 3: The layered transformation diagram.

depth planes contain fewer matching feature points so that robust homography
cannot be obtained. To solve this problem, we have adopted an interpolation
mechanism. Formula (5) in Section 3.1 shows that we can only use a known ho-
mography to compute an unknown homography. In order to get a more robust
result, we use all known homgraphy to compute the unknown homography of
the same depth plane. Thus we can get multiple candidate homographies that
are calculated as

Hi
∗=

sik
s∗

(H
i
k−E) + E, (7)

where subscript k present the meaning of known, so sik and s∗ are the depth value
of the i-th known homography and the depth value of the unknown homography
respectively. Hi

k is the i-th known homography, and Hi
∗ is the homography com-

puted by the i-th known homography. The unknown homography is estimated
from the weighted homography as

H∗ = E+

n∑
i=1

wi
∗(H

i
∗ − E). (8)

The weights
{
wi

∗
}n
i=1

change according to the distance of between the i-th depth
layer of known homography and the depth layer of unknown homography, which
are calculated as

wi
∗ = exp(−

∥∥sik − s∗
∥∥2/σ2). (9)

Here, σ is a scale parameter. Therefore, we can use known and stable homogra-
phies to calculate those unstable homography by equation (8).

4 Experiment Results

In this section, we carry out experiments to verify the proposed stitching meth-
ods. First we compare our algorithm with state-of-the-art methods [10, 11, 4].
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We analyze the ghost artifact and check whether the stitching methods offer
a true perspective transformation. The results demonstrate that our method
outperforms all the others in both two aspects. To validate the proposed in-
terpolation method, we also offer the stitching results and compare it with the
APAP method.

Fig. 4: The qualitative comparisons of alleviating ghosting artifacts. List of
acronyms and initialisms: global homography, as-projective-as-possible, parallax-
tolerant image stitching.
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Fig. 5: Comparison of perspective conversion. comparing APAP stitching result
with I2, the relative position of the background layer and the bear did not
change. Comparing our stitching result with I2, the background moved relative
to the bear to the left.

The test LF images are captured by Lytro illum. The Lytro camera is fixed in
a slide.Only translational motion, without any rotational movement, is included
in the experiments. The raw data is then decomposed by the LF Toolbox 0.4
into view arrays of the dimensions 15x15x434x625. The center view depth map
is estimated by the Lytro desktop software.

4.1 Comparisons with other methods

An adequate stitching algorithm should transform the images captured from
different perspectives into one coordinate system and merge them together. Thus
the algorithm should offer a true perspective transformation and introduce as
few ghosting artifacts as possible.

We here compare our method against other state-of-the-art stitching methods
: as-projective-as-possible (APAP) [10], parallax-tolerant image stitching (PA-
TOIS) [11] and the global homography (GH) [4] as baseline. To fairly compare
the methods, we do not consider sophisticated post-processing like seam cutting
and straightening, and simply blend the aligned images by intensity averaging
so that any misalignments remain conspicuous.

As shown in Fig. 4, the GH method produces severe ghosting artifacts. It
is easy to be understood because a global homography cannot satisfy all the
pixels lying on different depth planes, as what we emphasize in Section 3. The
APAP divide the image into blocks and calculate transformation for each block.
However if the block lies cross the edge of the objects, APAP will fail because
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Fig. 6: Interpolation result. The homography of second depth plane (Ru-
bik’s Cube) is interpolated by weighted homographies of first depth plane
(MashiMaro) and third depth plane (background).

it perform the same transformation on pixels belong to different depth planes.
Thats why it works well at the center of the object (like the pen container in Fig.
4) but fails at the object boundary (e.g. the teddys hand and hello kitty head
in Fig. 4). The PATOIS employs a block-based warping. Therefore, it suffers
from the object boundary for the reason we give above. Our method obviously
outperforms all the others. Almost no ghost artifacts or blur could be found. It
verifies that our analysis for the essential cause of ghosting artifacts is reasonable
and our proposed method really works.

Secondly we check if these methods provide the true perspective transfor-
mation. After transforming the right image(I2) to the left one(I1), the aligned
image should show the perspective from the left camera. Objects at different
depth have different disparity. Thus their relative position should be changed by
a true perspective transformation. But we may see, for the methods shown in
Fig. 5, only our method can achieve this.

4.2 Interpolation module validation

To validate our interpolation module, we use our interpolation mechanism to
interpolate the homography matrixs. As shown in Fig. 6, the stitching result
with our method suffer from obvious ghosting artifacts at the depth plane of
Rubik’s Cube. The reason for this phenomenon is that the depth plane of Rubik’s
Cube contains fewer matching feature points, which results in the inaccuracy of
Homography calculated using those points. At the same time, compared with
GH and APAP, the stitching result with interpolation produces a surprising
result. This shows that our interpolation mechanism can achieve better results
when the homographies of some depth planes cannot be calculated or calculated
accurately by using the feature points directly.
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Table 1: Comparison of the running time of each method.
GH APAP NGA

feature points extraction 0.69s 0.69s 0.69s
RANSAC algorithm 9.89s 9.89s 9.89s

compute homographies 0.0101s 1.0924s 0.0136s
total 23.0s 24.4s 23.2s

4.3 Run time

We implemented all methods in MATLAB2016 and on a DESKTOP-40REPQJ
computer running at 3.40GHz. The obvious difference between these meth-
ods(GH, APAP and NAG) is the number of times the homographies are com-
puted, but it doesn’t take much time to finish this step. In fact, it takes most
of the time to extract feature points and use RANSAC algorithm in 2D image
stitching, so the total running time of these methods is about the same. As
shown in Table 1, the experimental result is consistent with our conjecture.

5 Conclusion and Future Work

We have proposed a simple but effective stitching method NGA to stitch images
without ghosting artifacts. We theoretically revealed the intrinsic cause of the
ghosting problem and demonstrated that different depth scenes require different
homographies for warping. An interpolation mechanism is also proposed to en-
sure that each depth plane has its own homography. the experiments results show
that our proposed method not only stitch images without ghosting artifacts, but
also achieve realistic perspective transformation compared with previous meth-
ods, and the interpolation mechanism we proposed is also reasonable.

We plan to implement LF stitching based on our method. We can use the
parallax relationship between the off-center perspectives and the central view in
LF to find areas where the off-center perspectives are the same depth planes as
the central view, and to propagate homographies at various depth levels of the
central perspective to the off-center perspectives.
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