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Abstract— Semantic information is important in video en-
cryption. However, existing image quality assessment (IQA)
methods, such as the peak signal to noise ratio (PSNR), are still
widely applied to measure the encryption security. Generally,
these traditional IQA methods aim to evaluate the image quality
from the perspective of visual signal rather than semantic
information. In this paper, we propose a novel semantic-
level full-reference image quality assessment (FR-IQA) method
named Semantic Distortion Measurement (SDM) to measure the
degree of semantic distortion for video encryption. Then, based
on a semantic saliency dataset, we verify that the proposed SDM
method outperforms state-of-the-art algorithms. Furthermore,
we construct a Region Of Semantic Saliency (ROSS) video
encryption system to demonstrate the effectiveness of our
proposed SDM method in the practical application.

I. INTRODUCTION

With the development of multimedia, visual privacy pro-
tection becomes increasingly significant in our life. Video
encryption is one of the most important means [1]. In
general, traditional image quality assessment (IQA) metrics
are used to evaluate the security effect of video encryption
systems [2]. For example, the encrypted region is taken
as safe if the peak signal to noise ratio (PSNR) of this
region is around 10dB [3]. However, existing IQA metrics
are usually associated with image signal instead of visual
contents, which can not reflect the semantic information
distortion caused by encryption due to the well-known
semantic gap [4]. Meanwhile, few studies focus on visual
security evaluation which has a crucial impact in measuring
the semantic effectiveness of video encryption [5]. Therefore,
we propose a semantic-level full-reference (FR-IQA) image
quality assessment method, which we name Semantic Dis-
tortion Measurement (SDM), to measure the loss of semantic
information for video contents caused by encryption.

According to the existence of reference images, existing
IQA approaches are classified into three categories, namely
full-reference IQA (FR-IQA), reduced-reference IQA (RR-
IQA) and no-reference IQA (NR-IQA). The NR-IQA refers
to automatic quality assessment of distorted images without
the corresponding reference images. Most of these algorithm-
s estimate the human perceptual quality by extracting dis-
criminative features from distorted images based on natural
scene statistic (NSS) [6], [7], [8]. In the RR-IQA mode,

This work was supported in part by the National Key Research and
Development Program of China under Grant 2016YFC0801001, in
part by the NSFC under Grant 61571413, Grant 61632001, and Grant
61390514, and in part by the Intel ICRI MNC.

the comparison is limited to the partial representation of
reference images. For instance, a set of reduced reference
entropic differencing (RRED) algorithms for IQA based on
information theory are proposed [9]. In this paper, we focus
on FR-IQA, where the quality of the distorted test image
is obtained based on the comparison with the non-distorted
reference image. A top-down framework is usually adopted
in FR-IQA [10], [11], [12], which tries to model the human
visual system (HVS) [13] based on some global assumptions.
Examples of classic FR-IQA algorithms include the structure
similarity index (SSIM) [10] and the visual signal-to-noise
ratio (VSNR) [11]. In general, these FR-IQA methods are
presented according to perceptual image signal level. How-
ever, our proposed SDM method is at a higher semantic level
which can reflect the semantic understanding of images more
accurately. Additionally, the basic ideal of the proposed SDM
method is based on image to text domain transformation
which has not been tried by other similar studies as far as
we know [14], [15], [16].

It should be emphasized that we design our method based
on the assumption that some studies show that the most of
time human focus on object-like regions when looking at an
image [17], [18]. Therefore, in most practical applications
such as video surveillance, we can reasonably assume that
semantic information mainly exists in foreground objects and
the relationship between them rather than the background,
which is a key idea of our paper. Based on this assumption,
we can achieve semantic encryption by encrypting objects
in the foreground. As we know that the region of interest
(ROI) encryption, an important type of encryption schemes,
refers to encrypting only the region of interest manually
selected by the administrator [19], [20]. Nevertheless, the
ROI encryption cannot guarantee the semantic target of en-
cryption because the background may be chosen to encrypt.
Thus, we construct the Region Of Semantic Saliency (ROSS)
video encryption system to overcome this disadvantage.
Specifically, we replace the manual tracking module in ROI
encryption system with the object detection module to realize
the automatic detection and semantic target encryption in
the foreground. Meanwhile, we also need to consider how
to evaluate the validity of our proposed SDM method.
Specifically, because of the same subjective visual distortion
caused by encryption and obscur, we obtain distorted images
by obscuring objects. First, we separately obscure all the
semantic objects in the foreground of the original image and
obtain obscure distortion images. Then, we employ our SDM
method to compute the scores between the original image and



Fig. 1: The framework of our proposed SDM method.

distorted images. Finally, a dataset is chosento to evaluate the
semantic accuracy of our method. Two important factors are
needed to be considered as follows:

1) Obscure Object Distortion: We produce distorted im-
ages by obscuring, which is to simulate the effect of encryp-
tion. Therefore, the object in the foreground of evaluation
dataset needs to be clearly segmented.

2) Semantic Ground-Truth: There should be clear value in
the corresponding region of the segmentation object, which
can be taken as the ground-truth of semantic information.

In conclusion, we choose a saliency dataset called SalObj
[21] as the evaluation dataset. The saliency value in this
dataset is adopted to represent the semantic information
ground-truth of the object in the foreground, which we name
the “semantic saliency ground-truth”.

In this paper, we first propose a Semantic Distortion Mea-
surement (SDM) method based on the image caption module
and the sentence similarity module. Second, we construct
a ROSS encryption system by improving the existing ROI
video encryption system [22]. Finally, two experiments are
conducted to show the effectiveness of our SDM method
compared with other metrics. The first experiment is to
evaluate the semantic accuracy of our method based on a
saliency dataset. The second demonstrates that the scores
obtained by our method can reflect the encrpted content more
effectively. To the best of our knowledge, this is the first
work that proposes a novel image-to-text-based IQA method
to measure the image semantic distortion and applies it to
the encrypted scene with good results [14], [15], [16].

The remainder of the paper is organized as follows.
Section II presents the proposed SDM method. Next, we
introduce our ROSS encryption system in Section III. Then,
the experimental results are presented in Section IV. Finally,
the conclusion is given in Section V.

Fig. 2: Examples of the SalObj dataset.

II. SEMANTIC DISTORTION MEASUREMENT METHOD

In this section, we first introduce the evaluation dataset
called SalObj [21] used in our paper. Then we present the
details of our proposed semantic-level FR-IQA method called
Semantic Distortion Measurement (SDM).

A. Evaluation Dataset

To the best of our knowledge, there is no semantic dataset
for video encryption yet. Meanwhile, based on the two
factors and the key assumption mentioned above, i.e. the
obscure object distortion and the semantic ground-truth,
we use a saliency dataset as a semantic saliency dataset
to evaluate the semantic accuracy of our SDM method,
which can provide the semantic information of objects in the
foreground. Saliency is usually divided into two categories:
fixation prediction and salient object segmentation [23].
The fixation prediction deals with predicting the locations
that the human observer focus on, while the salient object
segmentation aims to segment the most salient object. The
SalObj dataset is a high-quality saliency dataset that offers
both fixation and salient object segmentation ground-truth by
augmenting 850 images from the PASCAL 2010 [24] dataset.

Specifically, we utilize the salient object segmentation
subset of the SalObj dataset. As illustrated in Fig. 2, figures
(a) and (c) are the original images. Figures (b) and (d) are
the salient object ground-truth that we use. The salient object
segmentation experiment in the SalObj dataset is conducted
by 12 subjects labeling the salient objects. The grayscale
value (0∼255) of each segmented object indicates the degree
of saliency (the higher the saliency, the higher the value).

The SalObj saliency dataset has clear segmentation,which
can be utilized to obscure different semantic targets. Most
importantly, the different levels of grayscale value in these
segmentation regions can be regarded as the semantic im-
portance of the corresponding target, which we define as
semantic saliency ground-truth. To our best knowledge, it is
the only publically available dataset with different levels of
saliency objects, while other salient object datasets are just
divided into two levels, i.e., “saliency” (binary 1) and “not
saliency” (binary 0). Therefore, we choose the SalObj dataset
as the semantic saliency benchmark for our SDM method.

B. SDM Algorithm

Inspired by the fact that children learn new semantic
concepts by observing the visual words and listening to the
descriptions from their parents [25], we propose a novel
Semantic Distortion Measurement (SDM) method. The basic



idea of the proposed SDM method is the domain transfor-
mation described as follows.

The framework of our proposed SDM method is shown
in Fig. 1. Let I0 be the original image. First, we introduce
distortion to the original image and then obtain distorted
images. Specifically, based on the assumption that semantic
information mainly exists in foreground objects and the
relationship between them, we obscure each semantic object
region in the foreground, which can obtain the corresponding
obscure distortion images I1∼IK .

Second, we convert the original image and distorted im-
ages to the corresponding sentences with the state-of-the-
art image caption model named neural image caption (NIC)
[26]. In other words, the original image I0 and distorted
images I1∼IK are transformed to the original sentence S0

and distorted sentence S1∼SK , respectively.
Third, we compute the sentence distance Sdi between the

S0 and Si(i = 1, 2, . . . ,K) with the word mover’s distance
(WMD) [27] and the semantic propositional image caption
evaluation (SPICE) [28] algorithms, where K denotes to the
number of distorted images. Also, we name them SDM-
WMD and SDM-SPICE algorithms.

Finally, through this transformation, we can use the visible
image caption to represent the abstract semantic information
in the image. The degree of distortion of the image SDi is
equal to the corresponding distance between sentences Sdi.

III. ROSS ENCRYPTION SYSTEM

In this section, we first present our constructed Region
Of Semantic Saliency (ROSS) system in details. Then, we
introduce the concept of ‘Sensitivity’ in our experiment in
order to measure the changing degree of different IQA scores
for different encryption regions.

A. System Overview

For most specific scenarios, we can assume that the
semantic information mainly exists in foreground objects.
Meanwhile, obvious semantic information cannot be ac-
cessed because the background is fixed and unchanging.
Based on this assumption, here is the problem of traditional
ROI encryption system: The ROI is usually chosen by the
encryptor manually [29], [22], [30] and the ROI selected
by people may not be the most meaningful and semantic
goals for others, which is not conducive to the realization
of fully automated semantic system design. Moreover, it is
time-consuming and not impractical to select the encryption
area artificially before each encryption. Therefore, when
actually building the system, we need to use automatic se-
mantic target detection module instead of manually selecting
tracking module. Particularly, we re-implement the code and
replace the Open-Tracking-Learning-Detection (Open-TLD)
algorithm of [22] with the automatic detection model Mask
R-CNN in [31]. Thus, we realize a Region Of Semantic
Saliency (ROSS) video encryption to verify the effectiveness
of our SDM algorithm.

Fig. 3: Illustration of experimental ground truth and test
images.

B. Sensitivity Measurement
To measure the “semantic contents descriptive ability” of

IQA metrics/methods for different encrypted regions, we
introduce the ‘Sensitivity’ index. In machine learning, we
can use the relative standard deviation (RSD) to describe the
stability of a classifier as follows [32]:

RSD =
σc

µc
× 100%, (1)

where σc and µc are the standard deviation and mean of the
classification values, respectively. In particular, we consider
only two values C1 and C2 in video encryption scene.
C1 and C2 are the two IQA scores corresponding to two
different encryption regions R1 and R2. We then define the
‘Sensitivity’ as follows:

Sensitivity=RSD2=

√∑2
j=1(Cj − µc)2

1
2
(C1 + C2)

=
|C1 − C2|
C1 + C2

. (2)

Formula (2) shows that under the same kind of distortion, the
greater value of ‘Sensitivity’, the more sensitive the current
metric is for different encrypted regions, which is able to be
seen as a better ability to distinguish the image content.

IV. EXPERIMENT RESULTS

In this section, we first evaluate the performance of our
SDM algorithm on the salient object segmentation subset
of the SalObj dataset. Then, we apply the proposed SDM
method to assess the semantic distortion caused by ROSS
encryption in order to explore the sensitivity of different
methods.

A. Performance Evaluation

Our experimental ground truth and test images are given
in Fig. 3. Figures (a) and (b) are the reference/original image
and the semantic saliency ground truth respectively. It is
worth noting that there are four separate regions (back-
ground, horse 1, horse 2, child) of different semantic saliency
levels in figure (b) and the semantic saliency ground truth is
G = {g1, g2, g3, g4} = {0, 21, 170, 255}.



TABLE I: Performance Comparison on SalObj Dataset

SDM-WMD SDM-SPICE PSNR SSIM MSE MSSIM VSNR
SROCC 0.7319 0.7189 0.7032 0.6938 0.7042 0.6953 0.7010
KROCC 0.6742 0.6674 0.6356 0.6265 0.6373 0.6315 0.6362

VIFP UOI IFC NQM WSNR SNR VIF
SROCC 0.6854 0.6905 0.6842 0.7081 0.7039 0.7042 0.6763
KROCC 0.6200 0.6232 0.6179 0.6426 0.6379 0.6373 0.6021

Fig. 4: The comparison of the effect of ROSS encryption and
ROI encryption (QP = 32).

First, we obscure these four semantic segmentation regions
in sequence to simulate the influence of encryption (making
it impossible for the human eye to identify objects in the
image), resulting in figure (c-f).

Second, we adopt fourteen kinds of typical FR-IQA met-
rics such as PSNR, SSIM as comparison to our algorithms
to compute the score between the obscure distortion images
(figure (c-f)) and the original image (figure (a)), such as the
SD-WMD score is SSD−WMD = {w1, w2, w3, w4} and the
PSNR score is SPSNR = {p1, p2, p3, p4}.

Finally, we adopt the Spearman rank order correlation
coefficient (SROCC) and Kendall rank-order correlation co-
efficient (KROCC) to evaluate the performance. The results
in Table I demonstrate that our proposed SDM outperforms
other state-of-the-art algorithms. The higher correlation of
our method indicates that our method can indeed reflect
higher-level semantic information than the lower-level signal
and structure information.

B. Sensitivity of Video Encryption

To compare the ‘Sensitivity’ of our SDM with other
metrics, we test a video sequence called Kimono1 which
is coded in the randomaccess configuration with the quan-
tization parameter QP = 32. Then, as shown in Fig. 4,
we select two different encryption regions. From Fig. 4, we
can see that figures (a) and (b) are the semantic encrypted
region (woman in the foreground) automatically detected by
our ROSS system and the corresponding encryption effect.
Meanwhile, figures (c) and (d) show the defect of non-
semantic encrypted region (tree in the background) caused
by selecting ROI manually. As a result, some mistakes may
be made on account of the subjective selection. Therefore,
our system is beneficial to exclude some interference from
the background in advance and define the scope of semantic
goals objectively. Note that the detected regions in Fig. 4

are rectangular due to the ‘Tile’ mechanism used in the
encryption system, i.e. each Tile region of High Efficiency
Video Coding (HEVC) is rectangular [22].

Table II shows the test results of the video sequence in
Fig. 4. The two scores of SSIM are almost the same for
two different encryption regions. Similarly, the sensitivity of
PSNR is also weak. Nevertheless, the values of ‘Sensitivity’
of our SDM-WMD and SDM-SPICE are 60.21% and 86.28%
respectively, which verifies that our approach has the better
ability to identify semantic targets and background relative
to other metrics in our ROSS encryption system.

Furthermore, we change the video quantization parameters
QP = {22, 27, 32, 37, 42, 47}. Fig. 5 shows that the ‘Sensi-
tivity’ performance with different QPs. It can be seen that
our method is robust for different video QPs, which is still
higher than the PSNR and SSIM even for low quality.

TABLE II: The Test Results of Video Encryption (QP = 32)

PSNR SSIM SDM-WMD SDM-SPICE
Woman 15.5087 0.6987 3.1672 0.7865

Tree 13.1816 0.6542 0.7865 0.6796
Sensitivity 8.09% 3.29% 60.21% 86.28%
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Fig. 5: The ‘Sensitivity’ performance with different QPs in
Kimono1.

V. CONCLUSION

In this paper, we propose a novel algorithm named SDM
to measure image semantic distortion in video encryption.
This method is based on domain transformation and verified
to have better accuracy in semantic distortion measurement
compared with other well-known metrics. Furthermore, we
construct a ROSS encryption system to show the high
sensitivity and good robustness of our proposed method.

Since the profile of obscuring objects can still provide
some semantic information for people to recognize, we may
design a subjective experiment aiming to replace the object
saliency values of SalObj. Besides, the accuracy of detection
module in the ROSS system can be improved in future study.
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