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Abstract—Stereoscopic video quality assessment (SVQA) is a
challenging problem. It has not been well investigated on how to
measure depth perception quality independently under different
distortion categories and degrees, especially exploit the depth
perception to assist the overall quality assessment of 3D videos.
In this paper, we propose a new Depth Perception Quality Metric
(DPQM) and verify that it outperforms existing metrics on our
published 3D-HEVC video database. Further, we validate its
effectiveness by applying the crucial part of the DPQM to a
novel Blind Stereoscopic Video Quality Evaluator (BSVQE) for
overall 3D video quality assessment. In the DPQM, we introduce
the feature of Auto-Regressive prediction based Disparity En-
tropy (ARDE) measurement and the feature of energy weighted
video content measurement, which are inspired by the free-
energy principle and the binocular vision mechanism. In the
BSVQE, the binocular summation and difference operations
are integrated together with the Fusion Natural Scene Statistic
(FNSS) measurement and the ARDE measurement to reveal the
key influence from texture and disparity. Experimental results
on three stereoscopic video databases demonstrate that our
method outperforms state-of-the-art SVQA algorithms for both
symmetrically and asymmetrically distorted stereoscopic video
pairs of various distortion types.

Index Terms—Stereoscopic video quality assessment, depth
perception quality, binocular summation and difference channels,
natural scene statistic, autoregressive prediction.

I. INTRODUCTION

HREE-DIMENSIONAL television (3D-TV) provides an

entirely new viewing experience. However, there are
still many quality issues in stereoscopic contents. Therefore,
stereoscopic image/video quality assessment is an important
and challenging research problem, which attracts a lot of
attentions [1]. Stereoscopic image/video quality assessment
contains multi-dimensional qualities. Three basic perceptual
quality dimensions, namely picture quality, depth quality and
visual discomfort, are identified in [2] to synthetically affect
the overall quality of experience (QoE) of 3D image/video.
It is essential to evaluate stereoscopic contents in all of the
dimensions, not simply in picture quality. In other words, the
ultimate goal of stereoscopic video quality assessment is to
develop an evaluation criterion that reflects total user expe-
rience. Moreover, ocular and cognitive conflicts may cause
visual fatigue and discomfort [3], which include vergence-
accommodation conflict [4], cognitive integration of conflict-
ing depth cues, and so on. In addition, visual fatigue and
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discomfort are also caused by display difference, viewing
distance, duration of viewing, and subject variation [5], [6].
Meanwhile, several studies and proposed models on 3D visual
discomfort have arisen recently. For example in [7], a study
on the relationship of 3D video characteristics, eye blinking
rate, and visual discomfort is conducted. In [8], a new concept
named the percentage of un-linked pixels map (PUP map) is
built to predict the degree of 3D visual discomfort. Basically,
the experimental methods and models of visual discomfort
are quite independent of that of image quality and depth
quality. Consequently, when viewing stereoscopic contents,
apart from visual discomfort, image quality and depth quality
are two significant aspects of overall 3D QoE which this paper
concentrates on.

For the overall quality assessment of stereoscopic images,
existing objective models can be grouped into three categories.
In the first category, some successful 2D image quality as-
sessment (IQA) metrics, which do not explicitly utilize depth-
related information, are directly applied to assess 3D image
quality. For example, four kinds of 2D IQA metrics are extend-
ed to assess stereoscopic image quality [9]. The second cate-
gory of methods combines depth perception information with
image distortion measurement to predict ultimate 3D overall
quality. Disparity information is integrated into two 2D image
quality metrics (SSIM [10] and C4 [11]) to obtain the overall
perceived quality of stereoscopic images [12]. Also, image
quality and stereo sensation are designed as separate metrics
and can be combined as an objective quality assessment model
for 3D images [13]. In [14], three approaches based on 2D
image quality metrics are used to integrate disparity images
and original images to compute the stereoscopic image quality.
In the third category, the binocular vision properties of the
human vision system (HVS) are modeled into conventional
2D IQA approaches. Binocular rivalry is one of the widely
used physiological models, which incorporates left and right
view signals by weights based on their energies, and is utilized
in several 3D IQA metrics [15]-[17].

Compared to stereoscopic image quality assessment (SIQA)
metrics, the quality evaluation of 3D/stereoscopic videos is
quite complex owing to temporal information. Lots of ef-
forts have been devoted to the study of stereoscopic video
quality assessment (SVQA) in the last few years. Based on
conventional 2D objective quality assessment metrics, the
perceptual quality metric (PQM) for overall 3D video quality
perception has been proposed [18]. Moreover, the PHVS-3D
is a novel SVQA method based on the 3D-DCT transform
[19]. Also, the spatial frequency dominance (SFD) model
considers the observed phenomenon that spatial frequency
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Fig. 1: Flow diagram of the DPQM scheme. The top dotted line block is the Auto-Regressive prediction based Disparity
Entropy (ARDE) measurement and the bottom dotted line block is the energy weighted video content measurement.

determines view domination under the ability of the human
visual system (HVS) [20]. The 3D spatial-temporal structural
(3D-STS) metric has been designed to evaluate the inter-
view correlation of spatial-temporal structural information
extracted from adjacent frames [21]. Recently, an objective
SVQA metric (i.e. the SIND-SVA) has been developed by
incorporating the stereoscopic visual attention (SVA) with
the stereoscopic just-noticeable difference (SJIND) model [22].
However, separate quality assessment models for image quality
and depth perception quality are needed to describe different
aspects of overall 3D QoE for stereoscopic videos [23]. In this
paper, we propose a depth perception quality metric. Then, we
also apply the key part of it to the overall quality assessment
for 3D/stereoscopic videos.

We design our model inspired by the principles of hier-
archical human visual cortex responses to 3D visual signals.
Specifically, when the human brain is processing stereoscopic
visual signals, the response of binocular disparity is initially
formed in the primary visual cortex (V1) area. Further, the
depth perception is enhanced through disparity-selective neu-
rons in the secondary cortical area V2. The output of V2 is
then used for the processing of dorsal and ventral pathways.
It is generally assumed that the dorsal pathway manages the
coarse stereopsis, while the ventral pathway focuses on the
fine stereopsis [24]. Also, an fMRI study [25] showed that
3D vision stimuli led to V3a activations in the visual cortex.
Moreover, V4 visual area plays a crucial role in the aspects
of fine depth perception and 3D imaging [26]. Therefore, the
neuronal responses to binocular disparity and depth perception
exist in both low-level and high-level visual areas.

Besides, the free-energy principle and the binocular vision
mechanism have been widely utilized in image/video quality
assessment [27], [28]. Inspired by these theories, we build our
stereoscopic perception model containing the Auto-Regressive
prediction based Disparity Entropy (ARDE) measurement and
the energy weighted video content measurement. Firstly, in the
ARDE measurement, we apply the auto-regressive approach to
decompose inter-ocular difference images into the predicted
and the disorderly portions, which is inspired by the free-
energy principle. When perceiving and understanding an input
visual scene, the free-energy principle indicates that the human
brain works as an internal inference process for minimizing the
free-energy and always attempts to reduce uncertainty through
the internal generative model [29]. Specifically, in addition
to the forward prediction from lower cortical areas to higher
cortical areas, the feedback from higher-level areas to lower-
level areas should also be used to influence the inference,
which is known as a circulation process [30], [31]. Secondly,
we propose the energy weighted video content measurement
inspired by the binocular vision mechanism. According to the
psychophysical studies about stereoscopic vision, if similar
monocular contents fall on corresponding retinal regions in left
and right eyes, binocular fusion occurs and can integrate two
retinal regions into a single and stable binocular perception
[32]. The fusional region is known as the Panum’s area. When
perceived contents presented to left and right eyes are obvi-
ously different, perception alternates between left and right
views, which is called binocular rivalry. Moreover, the HVS
cannot tolerate the binocular rivalry for a long time, which
results in binocular suppression, and then the entire content
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Fig. 2: Luminance extraction of distorted left and right view
YUYV format videos in 3D-HEVC video database [42]. (a)
The last frame of left view video; (b) The last frame of right
view video; (c) Gray-scale distorted map of left view; (d)
Gray-scale distorted map of right view.

from one of the retina may be suppressed [33]. Based on
the binocular rivalry mechanism, high energy region is more
likely to contain more important and useful visual information.
Therefore, left and right view signals should be integrated
by assigning different weights according to their binocular
energies [34]-[37]. Also, the binocular rivalry involves neural
competition in low-level and high-level cortical areas [38]-
[40] as well as the increase of neuron activity in V1, V2, V3a
and V4v areas [41]. They are consistent with the responses to
binocular disparity and depth perception in the visual cortical
areas.

In this paper, motivated by the above observations, we apply
the AR model to decompose inter-ocular difference images,
and then utilize entropy to reveal binocular disparity variation
as well as measure depth perception quality. Meanwhile, we
use binocular weights on the spatial and temporal features
of 3D videos to reflect video content difference and further
influence the ultima depth perception quality. Note that, the
depth perception quality is related to disparity and video
content according to the subjective experiment in our previous
work [42]. Therefore, we synthesize the two measurements
to develop a Depth Perception Quality Metric (DPQM). In
addition, we propose a Fusion Natural Scene Statistic (FNSS)
measurement to represent the binocular fusion peculiarity
and complement the ARDE measurement. Also, the FNSS
measurement and the ARDE measurement can be integrated
to form a Blind Stereoscopic Video Quality Evaluator (B-
SVQE) in the binocular summation and difference channels.
Furthermore, experimental results show the effectiveness of
the proposed stereoscopic perception model.

Since depth perception is important in the overall 3D
perceptual quality assessment for stereoscopic videos, we
first develop a Depth Perception Quality Metric (DPQM)

considering two primary affecting factors (i.e. disparity and
video content) for depth perception quality as follows: i) we
propose the new AR-based Disparity Entropy (ARDE) feature
to measure disparity variation; ii) we propose the Energy
Weighted Spatial Information (EWSI) and Temporal Informa-
tion (EWTI) features to reflect video content difference. These
three different types of features are combined by a support
vector regression (SVR) model to predict depth perception
scores. For the first aspect, suppression maps are generated
by subtracting left and right view videos in the luminance
plane. The free-energy principle based AR prediction is then
conducted on the suppression maps to decompose them into
the predicted and the disorderly portions. Then, the statistical
entropy feature of these two portions is applied to represent
disparity quality. Also, we verify the effectiveness of the depth
perception quality assessment model on the latest 3D-HEVC
video database.

Based on the DPQM, we then propose a Blind Stereoscopic
Video Quality Evaluator (BSVQE) containing three key as-
pects: i) we apply the binocular summation and difference
operations [43] to obtain fusion maps and suppression maps
from the prescribed stereoscopic video; ii) we propose some
Fusion Natural Scene Statistic (FNSS) features after the zero-
phase component analysis (ZCA) whitening filter in the fusion
maps; iii) we also utilize the ARDE feature in our depth
perception quality model for the suppression maps. Our ex-
perimental results show that the performance of our BSVQE
correlates well with human visual perception and is validated
to be effective and robust on three stereoscopic video databases
compared with other SVQA metrics. Our 3D-HEVC stereo
video database and a software release of the BSVQE are avail-
able online: http://staff.ustc.edu.cn/~chenzhibo/resources.html
for public research usage.

The remainder of this paper is organized as follows. Section
IT introduces the proposed Depth Perception Quality Metric
(DPQM) and the experiments on 3D-HEVC video database
containing subjective depth perception quality scores. In Sec-
tion III, we propose the Blind Stereoscopic Video Quality
Evaluator (BSVQE), which integrates the image quality from
the fusion map and the depth quality from the suppression
map. We present experimental results and analysis in Section
IV, and then conclude in Section V.

II. PROPOSED DEPTH PERCEPTION QUALITY METRIC

As depth perception is a fundamental aspect of human qual-
ity of experience (QoE) when viewing stereoscopic videos, the
evaluation of depth perception quality is important. Therefore,
we propose a Depth Perception Quality Metric (DPQM), as
depicted in Fig. 1. According to the subjective experiment in
our previous work [42], disparity and video content are two
dominating factors related to depth perception quality. Firstly,
inspired by the free-energy principle, the entropy feature of
the suppression map after autoregressive (AR) prediction is
extracted to reflect disparity variation. We name it AR-based
Disparity Entropy (ARDE) feature. Secondly, according to
the binocular vision mechanism, the 3D Energy Weighted
Spatial-temporal Information of left and right views, i.e. the
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Fig. 3: Image decomposition with AR prediction model. (a) Suppression map by subtracting the left and right gray-scale
distorted maps in Fig. 2; (b) Predicted portion; (c) Disorderly portion, i.e. predicted residual.

EWSI and EWTI features, are then used to demonstrate diverse
video contents. Finally, these three different types of features
are taken as the input to a support vector regression (SVR)
model for training quality prediction to obtain depth perception
scores.

A. AR-based Disparity Entropy Measurement (ARDE)

The human vision system (HVS) is more sensitive to
luminance. Hence, the gray-scale distorted map, i.e. the Y
component of the input YUV format video, is computed first
as shown in Fig. 2. The suppression map reflecting disparity
information can be obtained using the following operation by
subtracting left and right stereo-halves [44], [45]:

ST =Dr—Dr 6]

where D, and Dp are the distorted images for left and right
views in the luminance channel.

Generally, when perceiving and understanding visual in-
formation outside, the human brain always works under the
instruction of the free-energy principle and the Bayesian
theory [29]-[31]. Here, we utilize an autoregressive (AR)
prediction model [46], [47] for image content active inference.
Specifically, in order to predict an input image I (z, U), a prob-
abilistic model is adopted by minimizing the prediction error,
which is equivalent to maximizing the posterior probability as
follows:

maxp (z/U) st. U={z1,22,...,2N} 2)
where U represents the 21 x 21 pixels surrounding the central
pixel z in the input image, which is local compared with the
relatively larger image size in the experiment. Additionally, it
can be seen that those x; values have the strong correlation
with point z and play dominant roles for the maximization
goal [48]. Therefore, the mutual information I (z;x;) is set
as the autoregressive coefficient, and the AR model used to
predict the value of central pixel x is given by [49]:

o= amite 3)

x,eU

where x; are all of the adjacent pixels to central point z in a
surrounding region, ¢ is the white noise added to the prediction
process, and also the coefficients are computed as follows:
0 = I(x;2;) @
> I(w;xj)
z; €U

With the AR prediction model, i.e. equations (2), (3) and
(4), we can obtain the predicted image, then the disorderly
image is obtained by directly using the original suppression
map to subtract the predicted image. In other words, an input
suppression map is decomposed into two portions, namely, the
predicted image and the disorderly image which are shown in
Fig. 3.

The ‘surprise’ determined by the entropy of a given image
is then computed for the predicted image I;, and the disorderly
image I; respectively:

Py ==Y P(I,)logP (I,) (5)

Dy ==Y P(Is)logP (I,) (6)

After getting the two entropy features, we combine them by
the product operation as:

Qentropy = PHDH (7)

where Py and Dy are the entropy values for the predicted
and the disorderly portions. Qeniropy is the disparity quality,
which represents the AR-based Disparity Entropy (ARDE)
measurement and exposes the disparity difference among var-
ious stereoscopic videos. In addition, the relationship between
depth score and entropy on 3D-HEVC video database is shown
in Fig. 4. In general, from figures (a-b), we can see that
the entropy of the predicted portion influences the variation
of depth perception quality positively, so does the entropy
of the disorderly portion. Also, in figure (c), higher entropy
value of the suppression map results in higher depth score.
Moreover, the product operation of the predicted and the
disorderly parts makes the points in figure (c) cluster into three
groups generally, which is more obvious than the distribution
of the points in figure (a) and figure (b). And when there is
no disparity (i.e. Qentropy = 0), the MOS for depth are all
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Fig. 4: Demonstration of the relationship between depth score and entropy on 3D-HEVC video database [42]. (a) The

relationship between depth score and the entropy of the predicted portion; (b) The relationship between depth score and the

entropy of the disorderly portion; (c) The relationship between depth score and Qentropy.
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below 3. Note that, the 3D-HEVC video database contains
three levels of camera baselines which correspondingly reflect
three different perceived depth. Therefore, in this way, the
entropy feature after the product operation (i.e. Qentropy) can
predict the MOS for depth perception effectively.

For example, as presented in Fig. 5, we dispose of the
predicted and the disorderly parts separately. In Fig. 5, (a)
has a better perceptual depth quality than (d), i.e. the MOS
value for depth of (a) is higher than that of (d), though the
image qualities of the two stereoscopic videos are the same.
Correspondingly, figures (b) and (c) are the predicted and the
disorderly portions for figure (a). Also, figures (e) and (f)
are the predicted and the disorderly portions for figure (d).
The entropy values of (b) and (c) are 5.7132 and 4.0585
(both relatively larger), while the entropy values of (e) and
(f) are 5.2400 and 3.9596 (both relatively smaller). Hence, the
statistical characteristic of entropy can reflect the variation of
depth perception quality.

Specifically, when we have a larger amount of disparity, the
suppression map between left and right views has fewer pixels
equivalent to 0. Also, most of the pixels in the suppression
map is 0. Therefore, the entropy value of the suppression map
is higher. In other words, more entropy in the suppression
map can reveal larger disparity between the left and right
views of stereoscopic videos, which ensures a better perception
of disparity and possibly makes the perceived depth quality
higher.

The pseudocode of the algorithm for the new ARDE mea-
surement is shown in Algorithm 1. Since different camera
baselines represent various depth perception levels, given a
stereoscopic video, the AR-based Disparity Entropy (ARDE)
values are almost the same for each frame. For convenience,
we can utilize the last frame to compute the ARDE feature.
Therefore, the feature input into the SVR model is the product
of the entropy values which are extracted from the predicted
and the disorderly portions of the suppression map in the
luminance plane.

B. Energy Weighted Video Content Measurement

In order to investigate the impact of different video contents
on depth perception quality, we adopt the spatial information

Algorithm 1 Disparity model based on AR prediction

Input: Luminance maps of distorted left and right views, i.e.
Dy, Dg
Output: Entropy feature after AR prediction of suppression
maps Qentropy
1: for each stereo-halves Dy, and Dgr do
2: S~ = Dy, — Dr + suppression map
3: Decompose the suppression map into predicted portion
by Eq. (2,3,4) + AR prediction, and disorderly portion
(the suppression map subtracts the predicted image)
4: Generate Py = — ) P (1) logP (Ip)
5: Generate Dy = — > P (13) logP (1)
: Qentropy = PuDp (entropy feature for predicted and
disorderly portions)
7: end for
8: return Qcyiropy

(SI) and temporal information (TI) [50] to reflect the spa-
tiotemporal features for left and right view videos. Since the
neuronal responses in the visual cortex are almost separate
in the space-time domain [51], we use the binocular energies
as weights for left and right views on both the spatial and
temporal features. This is likely to reveal high-level cortical
processing because the features are extracted from global
video frames. The SI based on the Sobel filter is computed
as follows:

ST = maxr {stdg [Sobel (F},)]} (8)

where F), is each frame in the luminance plane at time n =
1,2,..., N, stdg is the standard deviation over the pixels in
the image space, and maxr is the maximum value in a time
series 1" of spatial information for the video. Moreover, the TI
is based upon the motion difference feature as below:

TI = mazxy {stdg [M, (4, )]} 9

where M, (4, j) is the difference between the pixel values at
the same location in the image space but at successive times
or frames of the luminance plane as:

M, (i,§) = Fn (i,5) — Fn1 (i) (10)
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Fig. 5: Demonstration of the effectiveness of the disparity feature ARDE. The first column contains the suppression maps,
while the middle and last columns contain the corresponding predicted and disorderly portions, respectively. (a) MOS for
depth is 4.1818; (b) Decomposed predicted portion of (a), entropy=5.7132; (c) Decomposed disorderly portion of (a),
entropy=4.0585; (d) MOS for depth is 3.3636; (e) Decomposed predicted portion of (c), entropy=5.2400; (f) Decomposed
disorderly portion of (c), entropy=3.9596.

TABLE I: 2D FR METRICS ON VIDEO SEQUENCES
AND DEPTH SEQUENCES

Video Sequences Depth Sequences

Metrics SROCC LCC SROCC LCC
PSNR 0.0488 0.0459 | -0.2430 | -0.2382
SSIM 0.1521 0.1403 | -0.1635 | -0.2059
FSIM 0.2171 0.2215 | -0.1098 | -0.1987
MS-SSIM | 0.2213 0.2272 | -0.1475 | -0.1749

TABLE II: COMPARISON WITH 2D FR METRICS ON
SUPPRESSION MAPS

Metrics SROCC | LCC
PSNR 0.6818 | 0.8215
SSIM 0.4874 | 0.5981
FSIM 0.7108 | 0.8246

MS-SSIM 0.4894 | 0.6062
Proposed DPQM 0.8654 0.9187

where F), (i,7) is the pixel at position coordinate (¢, j) of the
nth frame in time. Therefore, more motion in adjacent frames
results in higher values of TI.

In addition, the binocular rivalry mechanism indicates that
high energy region is more likely to contain more important
and useful visual information. In other words, left and right
views should be assigned different weights according to their
binocular energies [34]-[37]. Hence, we utilize an energy
weighted pooling method [52] given as follows:

EaR Eu R,
G ==Ll g, = 2Bl
> Ea > Ear
where the summations are performed on full energy and ratio

maps. (G; and G, represent the dominant levels of left and
right views respectively. Also, E,;, E,., Eq, and Ey, are the

(1)

TABLE III: COMPARISON WITH METRICS USING
DIFFERENT DISPARITY FEATURES ON SUPPRESSION

MAPS
Metrics SROCC LCC
Inter-ocular Difference 0.8188 0.8803
Separate Entropy 0.8501 0.9015
Weighted Sum 0.8297 0.8947
Product (Proposed DPQM) 0.8654 0.9187

energy maps of original and distorted videos by computing the
local variances at each spatial location [53]. The local energy
ratio maps in both views are computed as follows:

_ Ea Eqy
B Eol Eor
where [ and r denote left and right views respectively. Also,
d represents the distorted video, while o is the original video.

Given the values of G; and G, in (11), we compute the weights
assigned to left and right views by:

R

and R, =

12)

a2 e
wp = m and Wy = m (13)

Then, we can obtain the Energy Weighted average Spatial
Information (EWSI) as well as the Energy Weighted average
Temporal Information (EWTI) for the input stereoscopic left
and right view videos V; and V. as follows:

EWSIM,Q =wSI; + w,SI,
EWTng =wTI, +w,TI,

(14)
15)

respectively. We apply the energy weighted method to the
spatial and temporal features that can reveal the significance
of the spatiotemporal features for left and right views and
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Algorithm 2 Energy weighted video content measurement

Input: Left and right view videos V;, V.
Output: Average spatial and temporal features EW .Sy,
EWTI,g
1: for each luminance stereopairs do
2 Initialize EW S1,g =0, EWT14 =0
3: for F,,,n=1— N do
4 Sobel (F,) < Sobel filter
5 stdg[Sobel(F,)] (standard deviation in the spatial
domain)
6: ST = maxy {stdg [Sobel (F},)]} (maximum value
in the temporal domain)
end for
for pixel at position (7, j) do
: Generate My, (i,7) = Fp, (i,7) — Fn—1(4,7)
10: stds[My (i, 7))

11: TI = maxr {Stds [Mn (7”.])}}
12: end for
13: end for

14: Generate local energy maps E,;, E,., Eq4, Eg4. (local
variances at each spatial location)

15: Ry = Eg/Eo, R = Eg,./ E, < energy radios

16: Gy = (O EaRi)/ > Ea,Gr = (O EarRy)/ Y Ear <
pooling method

172w = GI/(G] + G})w, = G}/(G] + GI) «
weights assignment

18: EWSng = w;S1; + w,SI, and EWSng =w SI; +
wyS1,

19: return EW S1,g, EWT 144

ulteriorly reflect the impact of different video contents on
the depth perception quality. Also, the pseudocode of the
energy weighted video content measurement is presented in
Algorithm 2.

C. Depth Perception Quality Evaluation

After extracting the disparity feature and the energy weight-
ed spatial-temporal features, we adopt the SVR to train a
regression model that maps these three different types of
features into predicted depth perception scores. To our best
knowledge, only the 3D-HEVC video database created in our
previous work [42] correspondingly provides the subjective
depth perception quality score for each stereoscopic video.
Also, it contains three levels of camera baselines which
represent different perceived depth levels. Therefore, we use
this database to validate the effectiveness of our proposed
depth perception quality metric.

Due to lack of 3D depth perception quality assessment
metrics, we compute the performance of some state-of-the-
art 2D FR metrics on the 3D-HEVC database for both video
and depth sequences, as shown in Table I. We present the
average Spearman rank-order correlation coefficient (SROCC)
as well as the average linear correlation coefficient (LCC)
performance values of left and right view videos. From Table
I, we can find that the qualities of texture image and depth
image are not the same as the depth perception. Based on

FNSS Measurement

I
|
D L |
|

ZCA Filter
v
FNSS
|
I
AN Predicted
Score

Fig. 6: Flow diagram of the BSVQE method. The left dotted
line block is the Fusion Natural Scene Statistic (FNSS)
measurement and the right dotted line block represents the
Auto-Regressive prediction based Disparity Entropy (ARDE)
measurement.

the above analysis, we compare our metric with classical 2D
FR metrics on the suppression maps in equation (1). Table II
gives the comparison results showing that our depth perception
quality evaluation metric outperforms the others.

In addition, we also try to apply different disparity features
including the entropy of the inter-ocular difference channel,
the separate entropy features of the two portions, and a
weighted sum of the entropy values for the predicted and
the disorderly portions. The results are shown in Table III.
For the weighted sum metric, the weights for each entropy
of the predicted and the disorderly portions is set to 0.5
as an example. As can be seen in Table III, the product
operation performs better than other metrics. Therefore, it
can be demonstrated that the combination of the entropy
product operation and the energy weighted spatial-temporal
features is effective to develop the depth perception quality
metric (DPQM). One possible explanation is that, since the
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entropy values are either 0 or greater than 1 which can be
seen in Fig. 4 (a-b), the product of entropy values for the
predicted and the disorderly portions is enough to enlarge the
discrepancies among various perceived depth levels, compared
with other methods. Furthermore, the effectiveness of the
proposed DPQM scheme is also validated by incorporating
the key part of it into the proposed overall stereoscopic video
quality assessment metric, which outperforms existing SVQA
metrics on three stereoscopic video databases.

III. PROPOSED BSVQE METHOD

For the reason of multi-dimensional quality assessment
characteristic for 3D videos, the efficient AR-based Disparity
Entropy (ARDE) measurement described in section II-A is
adopted by combining with the Fusion Natural Scene Statistic
(FNSS) features after the zero-phase component analysis (Z-
CA) whitening filter. They are applied to develop a more gen-
eral SVQA method. The block diagram of the proposed Blind
Stereoscopic Video Quality Evaluator (BSVQE) is shown

in Fig. 6. Firstly, we utilize the binocular summation and
difference operations to obtain the fusion map as well as
the suppression map of the distorted left and right views in
the luminance plane. Secondly, the ZCA whitening filter is
applied to the fusion map, and then the FNSS features are
extracted from the filtered image. Thirdly, the AR prediction
based depth perception is applied to the subtracted suppression
map to extract the ARDE feature. Finally, the support vector
regression (SVR) is adopted to predict the overall quality
scores for stereoscopic videos.

A. Binocular Summation and Difference Channels

Depending on the scenes viewed by left and right eyes,
binocular vision operates in several kinds of ‘modes’ [54]. If
left and right images are completely incompatible, then the
binocular rivalry occurs and our visual perception alternates
between two views. Otherwise, our eyes fuse left and right
views into a single percept which is usually close to the
summation of left and right images as:

S*=Dr+ Dg (16)

where D, and Dpg are left and right view images respectively.

The summation and difference of a stereo-pair is shown in
Fig. 6 as an example. We can see that the images from the
two channels are quite different. Specifically, the summation
image reflects the fusion ability of the stereo-halves, while
the difference image reveals the disparity information between
left and right views. Then, the signals from the binocular
summation and difference channels are multiplexed so that
each primary visual cortex (V1) neuron receives a weighted
sum of the visual signals from these two channels [55].
Therefore, we adopt the binocular summation and difference
operations of the distorted left and right view images in the
luminance plane, as denoted in equations (1) and (16). This
way, we obtain the fusion map and the suppression map
simultaneously.

B. Fusion Natural Scene Statistic Measurement (FNSS)

In order to develop a No Reference (NR) stereoscopic
video quality assessment metric, we adopt the NSS features
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of Fusion map (FNSS) from the distorted videos. Specifically,
before extracting the FNSS features of the distorted left
and right views, the zero-phase component analysis (ZCA)
whitening filter is applied, in order to reduce the correlation
among adjacent pixels, i.e. the spatial redundancy as:

7t = ZCA(S*) = ZCA(Dy + Dg) (17)

Then, we adopt an NSS model in the spatial domain to
extract the features revealing the perceived quality of fusion
image. They also complement the disparity feature in the
difference channel. We implement the decorrelating effect on
the fusion map after ZCA by divisive normalization transform
and local mean subtract [54] as below:

Zt (z,y) — p(x,y)
o(z,y)+C
where C is a small constant to avoid the instability of the

denominator, p (x,y) and o (z,y) are the mean and standard
deviation of the input fusion image Z* (z,y) respectively as:

1 J
p(z,y) = Z Z wi,jZi—t_j (z,9)

i=—1 j=—J

ZF (x,y) = (18)

19)

I J
o(ry) = S wii (2] (x.y) —plzy) Q)
i=—1j=—J
where w = {w; |t = —I,...,1,j = —J,...,J} is a 2D
circularly-symmetric Gaussian weighted function.

Given a fusion image from left and right views in the
luminance plane, Fig. 7 shows the statistical distribution before
and after the ZCA whitening filter and the decorrelating
process. From figures (a-c), we can find that the ZCA filter
and the divisive normalization both make the probability dis-
tribution of the fusion map more Gaussian-like and statistically
significant.

Algorithm 3 Fusion NSS model

Input: Luminance maps of distorted left and right views, i.e.
Dy, Dg
QOutput: FNSS features extracted from the fusion maps
1: for each stereo-halves Dy and Dy do
2: St =Dy + Dg + fusion map
3 Generate Z" = ZCA(S*) « ZCA filter
4: Generate Z+ < Z7* by Eq. (18,19,20)
5 Quantify the statistical distribution using AGGD mod-
el f(z; )\, 0},02) by Eq. (21,22,23,24)
6: Utilize original image and reduced resolution scales to
perform as the FNSS features
7: end for
8: return FNSS features

In addition, the probability distribution of various distortion
types for the normalized fusion map after ZCA compared
with the pristine stereoscopic video is shown in Fig. 8.
The original video and 3D-HEVC type distortion are from
3D-HEVC database [42], while the Gaussian blur distortion
comes from SVQA database [22]. Also, the H.264, JPEG2000,
reduction of resolution for 4 downsampling and image sharp-
ening (edge enhancement) are from NAMA3DS1-COSPADI1
database [56]. Fig. 9 shows that the probability distribution
of the normalized fusion images after ZCA is affected by
different distortion levels of 3D videos. We use the H.264
video coding and JPEG2000 still image compression distortion
from the NAMA3DS1-COSPAD1 database, as illustrated in
Fig. 9.

Then, we quantify the statistical distribution using the
asymmetric generalized Gaussian distribution (AGGD) [57].
The AGGD with zero mean value mode to fit the distribution
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TABLE IV: SROCC COMPARISON ON 3D-HEVC DATABASE

Metrics 2D Direct Average | 3D Weighted Average [61] | 2 Pooling (BEST) [62]
PSNR 0.3804 0.3851 0.3429
SSIM 0.3811 0.3629 0.3777
FSIM 0.6993 0.6930 0.6865
MS-SSIM 0.6149 0.6027 0.6189
VQM 0.6800 0.6602 0.6766
Proposed BSVQE 0.8970

TABLE V: COMPARISON WITH 3D METRICS ON BOTH SVQA AND NAMA3DS1-COSPAD1 DATABASES

SVQA database NAMA3DS1-COSPAD1 database
Metrics SROCC LCC SROCC LCC
PQM in [18] 0.8165 0.7852 0.6006 0.6340
PHVS-3D in [19] 0.7195 0.7082 0.5146 0.5480
SED in [20] 0.6633 0.6483 0.5896 0.5965
3D-STS in [21] 0.8338 0.8311 0.6214 0.6417
SIND-SVA in [22] 0.8379 0.8415 0.6229 0.6503
Proposed BSVQE 0.9387 | 0.9394 | 0.9086 0.9239
is given by: TABLE VI: PERFORMANCE OF DIFFERENT
R DISTORTION TYPES ON SVQA DATABASE
S U <0 istorti
. 2 -2\ _ (pl-‘r/)r)l"(l/)\)e Distortion type | SROCC LCC
f@i Aot 07) { A —(E >0 h H.264 0.9379 | 0.9371
(prt+pr)T(1/X) - Gaussian blur 0.9505 0.9568
where
r'(3) : - o
pL =0y (3 (22)  according to the relationship between depth and disparity to
(X) compute the disparity as follows [60]:
r(5) i=12
— 23 =— (25)

and ) is the shape parameter controlling the shape of the statis-
tic distribution, while o7, 02 are the scale parameters of the
left and right sides respectively. Further, the AGGD becomes
the generalized Gaussian distribution (GGD) when p; = p,.
For each fusion map of stereoscopic videos, the parameters
(X, 0%,02) are estimated using the moment-matching based

approach [58]. Also, the parameters (1, A, 07, 02) of the best
AGGD fit are computed where 7 is given by:

L)
()

Thus the two scales, i.e. the original image scale and a
reduced resolution scale (low pass filtered and downsampled
by a factor of 2) proposed in [59] are used to perform as the

FNSS features extracted from the fusion map. The pseudocode
of the FNSS measurement is shown in Algorithm 3.

n=(pr — p1) (24)

C. Overall 3D QoFE with AR Based Depth Perception

As can be seen in section II, the AR prediction is adopted
to gray-scale suppression maps. Then, the entropy feature
along with the spatial-temporal features are used to assess the
depth perception quality. Also, we validate the effectiveness
of the depth perception model on 3D-HEVC video database.
Furthermore, the 3D-HEVC video sequences have been the
only available stereoscopic videos of multi-view plus depth
(MVD) format to date. Hence, this disparity feature (i.e. the
ARDE feature) saves the computation complexity with no need
for applying different algorithms to estimate depth maps. Then

where f is the focal length, B is the baseline of the camera,
and z, is the depth value.

Additionally, the depth map, as computed from numerical
images, is a concept that we use in order to represent depth
information. However perceptually, current studies suggest that
the depth map is not available in the human vision system
(HVS). If there exists, it is likely that such a depth map is the
output of a high-level visual cortical area, which is not always
correlating well with the depth perception quality. Therefore,
here we utilize the disparity feature by computing the entropy
after AR prediction in the difference channel, instead of the
depth map, as a vital input feature to get the 3D overall quality
for stereoscopic videos.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We conduct experiments on three 3D/stereoscopic video
databases, namely, two widely-used and publicly avail-
able databases (i.e. SVQA database [22] and NAMA3DSI-
COSPADI database [56]) as well as our established 3D-HEVC
video database [42], to examine the validity of our proposed
overall SVQA model BSVQE. The 3D-HEVC video database
contains 138 stereoscopic distorted video sequences obtained
from 6 source 3D videos. They cover various spatial and
temporal complexities of texture video and of depth video.
In the 3D-HEVC database, the distorted videos are under
different artifact levels of symmetric and asymmetric 3D-
HEVC compression, and have diverse depth levels. Moreover,
when watching stereoscopic videos, viewers need to rate three
types of scores, i.e. image quality, depth quality, and 3D
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TABLE VII: SROCC OF DIFFERENT DISTORTION TYPES ON NAMA3DSI1-COSPAD1 DATABASE

Metrics H.264 | JPEG2000 | Downsampling and Sharpening
SIND-SVA in [22] | 0.6810 0.6901 0.5071
Proposed BSVQE | 0.8857 0.8383 0.8000

TABLE VIII: LCC OF DIFFERENT DISTORTION TYPES ON NAMA3DS1-COSPAD1 DATABASE

Metrics H.264 | JPEG2000 | Downsampling and Sharpening
SIND-SVA in [22] | 0.5834 0.8062 0.6153
Proposed BSVQE | 0.9168 0.8953 0.9750

overall quality, while all of the videos are in the zone of
visual comfort. The image quality is the perceived quality of
the pictures. Also, the depth quality refers to the ability of the
video to deliver an enhanced sensation of depth. Moreover, the
3D overall quality is given by comprehensively considering
both the image quality and the depth quality.

The SVQA database contains 450 symmetric and asymmet-
ric stereoscopic video clips that can be classified into two
distortion types. To be specific, half of them are under H.264
video coding compression distortion and the remaining are
under Gaussian blur artifacts.

The NAMA3DS1-COSPAD1 database takes 10 source se-
quences (SRCs) from NAMA3DSI to be impaired by various
spatial or coding degradations, which has 100 symmetric
distorted stereoscopic videos. The coding impairments are
introduced through the H.264/AVC video coder and JPEG
2000 still image coder. Also, losses in resolution have been
considered. Specifically, two hypothetical reference conditions
(HRCs) sequences are either downsampled by a factor of 4 or
sharpened by image edge enhancement.

In all of the above three stereoscopic video databases, the
Absolute Category Rating with Hidden Reference (ACR-HR)
on 5 discrete scales has been performed. Also, the associated
mean opinion score (MOS) value is provided for each stereo-
scopic video. Additionally, each database is divided randomly
into 80% for training and 20% for testing. We perform 1000
iterations of cross validation on each database, and provide the
median Spearman rank-order correlation coefficient (SROCC)
and linear correlation coefficient (LCC) performance as the
final measurement.

In 3D-HEVC database, for the evaluation of our met-
ric performance, SROCC and LCC are used. Meanwhile,
higher correlation coefficient means better correlation with
human perceived quality judgment. We compare with three
different kinds of 2D and 3D algorithms by SROCC, which
are 2D direct average, 3D weighted average, and two times
pooling strategy on the texture and depth sequences of the
videos. Furthermore, in SVQA and NAMA3DS1-COSPADI
databases, SROCC and LCC are also adopted to compare
the performance with other state-of-the-art stereoscopic video
quality assessment metrics to verify the effectiveness of our
proposed BSVQE method.

A. Correlation with MOS on 3D-HEVC Database

As can be seen in Table IV, we compare the SROCC perfor-
mance of our proposed BSVQE method with other state-of-
the-art 2D and 3D Full Reference (FR) objective stereoscopic

video quality metrics on 3D-HEVC video database, including
2D direct average, 3D weighted average [61], and two times
pooling approach [62]. The 2D direct average is computed
by averaging the SROCCs performance of the classical 2D
metrics for left and right view videos to derive the SROCC of
a 3D video. In the 3D weighted average metric, a 2D-to-3D
weighted scheme is added to 2D FR metrics, which accounts
for the effective binocular vision perception mechanism of the
HVS [61]. Here, we apply the weighted scheme to the widely
used 2D FR metrics. The twice pooling method aims to evalu-
ate the 3D/stereoscopic video coding quality with 2D objective
metrics by using both the texture and depth sequences for two
times pooling [62]. Three different types of pooling functions
are used and we take the best results presented in Table IV.
From Table IV, we can observe that our proposed BSVQE
method achieves superior SROCC performance compared with
those three state-of-the-art algorithms. Meanwhile, we also
compute the LCC achieving 0.9273 for our metric.

B. Comparison with Other 3D SVQA Metrics

In order to demonstrate the robustness and effectiveness of
our proposed BSVQE method on more stereoscopic video
databases, we conduct more experiments on SVQA and
NAMA3DS1-COSPADI databases. Table V shows the com-
parison of SROCC and LCC with several state-of-the-art
3D objective quality assessment metrics, such as PQM [18],
PHVS-3D [19], SFD [20], 3D-STS [21] and SJIND-SVA [22],
for stereoscopic videos in SVQA database and NAMA3DS1-
COSPADI database. The results show that our method out-
performs the others notably. Furthermore, in order to discover
how the percentage number of training affects the overall
performance of our BSVQE algorithm, we vary the percentage
of training and testing sets to plot the median performance
for 3D-HEVC video database [42], SVQA database [22],
and NAMA3DS1-COSPADI1 database [56]. Fig. 10 shows the
change of SROCC and LCC performance with respect to the
training percentage. We can observe that a large number of
training data bring about the increase of performance on all
of the three stereoscopic video databases.

C. Performance on Individual Distortion Types

As SVQA and NAMA3DS1-COSPADI1 databases both con-
sist of different distortion types, it is interesting to know
the performance on each individual distortion type. In this
experiment, we examine the SROCC and LCC performance of
our proposed BSVQE method for each separate distortion type
on two stereoscopic video databases as shown in Table VI, VII,
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and VIII. In Table VII and VIII, we also compare with the
state-of-the-art 3D video quality assessment algorithm SJIND-
SVA [22] on NAMA3DSI1-COSPADI1 database. From the
results presented in the tables, we can find that our proposed
BSVQE method is suited to various distortion types for both
symmetric and asymmetric distorted stereoscopic videos.

V. CONCLUSIONS

In this paper, we have presented a depth perception quality
metric and extended it to a No Reference stereoscopic video
quality assessment (SVQA) method for stereoscopic videos.
The main contributions of this work are: 1) according to
the subjective experiment in our previous work, we derive a
depth perception quality prediction model based on the free-
energy principle as well as the binocular vision mechanism
and verify the effectiveness of this depth perception quality
assessment model on 3D-HEVC video database; 2) we propose
a Blind Stereoscopic Video Quality Evaluator (BSVQE) for
assessing the 3D overall quality of distorted stereoscopic
videos, which is different from other SVQA metrics, in the
sense that we consider the depth feature ARDE along with
the texture feature FNSS into the SVQA problem; 3) in the
BSVQE method, we combine the binocular summation and
difference channels with NSS and entropy; 4) a comparison of
our method with some 2D/3D state-of-the-art SVQA metrics
is conducted on three databases. Our results show that our
introduced metric is promising at handling the stereoscopic
video quality assessment problem of both symmetrically and
asymmetrically distorted 3D videos, as well as for different
distortion types.

In addition, we would like to point out that the stereoscopic
video databases used in our current study include mostly
artifacts due to various codecs. Also, how to apply different
color spaces and extend our database as well as quality
assessment model to investigate the influence of synthesis
distortions [63] should be considered in future research.
Meanwhile, future work could also involve modeling direct
effects of binocular rivalry on the difference in perceived
depth quality, such as local depth discrepancies, conflicting
depth cues, and depth flickering, etc. Besides, we presume
that it may be worthwhile to investigate the use of alternative
statistical features and introduce more cortical functions to

conduct further psychophysical studies on visual cortex in
the stereoscopic perception model. Furthermore, apart from
depth perception, it is important to understand human opinions
on visual discomfort, aiming to develop a more complete
objective quality assessment model for 3D QoE.
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