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Abstract—Visual Quality Assessment of 3D/stereoscopic video
(3D VQA) is significant for both quality monitoring and op-
timization of the existing 3D video services. In this paper,
we build a 3D video database based on the latest 3D-HEVC
video coding standard, to investigate the relationship among
video quality, depth quality, and overall quality of experience
(QoE) of 3D/stereoscopic video. We also analyze the pivotal
factors to the video and depth qualities. Moreover, we develop
a No-Reference 3D-HEVC bitstream-level objective video quality
assessment model, which utilizes the key features extracted from
the 3D video bitstreams to assess the perceived quality of the
stereoscopic video. The model is verified to be effective on our
database as compared with widely used 2D Full-Reference quality
metrics as well as a state-of-the-art 3D FR pixel-level video quality
metric.

Keywords—stereoscopic video; database; visual quality assess-
ment; bitstream-level model; 3D-HEVC

I. INTRODUCTION

With the rapid development of 3D video technologies and
applications, the research on Visual Quality Assessment of
3D/stereoscopic video (3D VQA) has attracted wide interest in
both academia and industry. 3D VQA is important for quality
monitoring and optimization of stereoscopic video services,
which involves in several aspects e.g., multiview and depth
compression, transmission, and stereoscopic display. The Joint
Collaborative Team on 3D Video Coding Extension Develop-
ment (JCT-3V) accomplished an advanced 3D extension of
High Efficiency Video Coding standard (3D-HEVC) to support
efficient representation of multiview video and depth-based 3D
video formats [1] in 2015. Therefore, it is desirable to establish
a 3D-HEVC video database for investigating the influential
factors to the subjective quality of 3D-HEVC compressed
video. Moreover, the database with subjective quality labels
provides ground truth for developing 3D-HEVC bitstream-
level objective video quality assessment models, which are
highly efficient for monitoring video quality in networks [2].

Visual quality assessment of 3D video is a challenging
problem [3], which involves multiple quality dimensions.
Three basic quality dimensions, namely video quality, depth
quality, visual discomfort, are identified in [4] to collectively
affect the quality of experience (QoE) of 3D video. Some
subjective study of these quality aspects have been done
in literatures. Recent subjective study based on stereoscopic
image databases [5]–[7] showed that in case of symmetric
distortion of left and right views, the perceived quality of the
binocular combination was approximately the average quality
of both views. Whereas, in case of asymmetric distortion,

the influence of both views on the binocular combination
quality is distortion-type dependent [8] due to the complex
human binocular perception mechanism. This phenomenon
is also observed for 3D video [9]. Further, the relationship
of eye-strain, perceived depth, and perceived image quality
is discussed in [10] for stereoscopic image and in [11] for
3D video. However, the 3D video contents in [10] were
compressed by H.264 in Intra mode, which is less practical
from the perspective of building objective 3D video quality
assessment model.

For the convenience of research on objective quality as-
sessment model of stereoscopic video, three public accessible
stereoscopic video databases [12]–[14] have been created so far
as we know. MMSPG 3D video database [14] only considered
the influence of camera baseline parameter on the QoE of
3D video. Different types of symmetric distortions including
H.264 and JPEG 2000 compression artifacts, blurriness, and
sharpening effects, were created in NAMA3DS1-COSPAD1
database [13]. Both symmetric and asymmetric compression
degradations produced with H.264/AVC and HEVC encoders
were included in the database of [12]. Note that the distor-
tions in both views of stereoscopic video are manipulated
independently. However, in future practice, the multiple views
of 3D video will be more likely encoded by exploiting the
inter-view correlation as done in 3D-HEVC, and the influence
of compression on the optimization of the synthesized view
should also be considered.

In this paper, we build a 3D-HEVC compressed video
database to study the influence of varying depth range and 3D-
HEVC compression artifacts on the visual quality of various
3D video contents. Our ultimate goal of building this database
is to develop a bitstream-level 3D-HEVC video quality as-
sessment model. Thus, we further propose a preliminary No-
Reference (NR) objective video quality assessment algorithm
based on some relevant features extracted from the 3D-HEVC
bit-streams. The experiment results demonstrate that our pro-
posed bitstream-level 3D video quality assessment model
achieves significant improvement over some widely used Full-
Reference (FR) 2D and 3D pixel-level quality assessment
algorithms.

For the other parts of the paper, we describe the details
of building the 3D-HEVC video database in Section II. In
Section III, we discuss the relationship of video quality,
depth quality and overall QoE, and investigate the key factors
to these qualities. In Section IV, we propose a simple but
effective bitstream-level quality assessment model and analyze
its performance. Finally, our conclusions and future work plan



are presented in Section V.

II. SUBJECTIVE EXPERIMENT METHOD

To build our 3D-HEVC video database, we select the 3D
video content covering various spatial and temporal complex-
ities for the texture video and depth video. We also design
different distortion levels of symmetric and asymmetric 3D-
HEVC compression.

A. Selection of Video Content

The selected video content covers a wide range of spatial-
temporal complexity and disparity complexity. We use the 3D-
HEVC testing sequences [15], which are the only publicly
available 3D videos of multiview plus depth (MVD) format so
far. The disparities of all sequences are within the comfortable
viewing zone in our viewing conditions of 3D videos, except
the sequence “Newspapers” in the wide baseline case (defined
in the next subsection). Thus, we exclude “Newspapers” from
our database. Six high-quality pristine stereoscopic videos
finally selected in our database are shown in Fig. 1. The spatial
and temporal complexities of texture video (SI, TI) and of
depth video (DSI, DTI) are calculated according to ITU-T
P.910 and shown in Fig. 2. All sequences are of 1920x1088
pixels per frame, except “Balloons” of 1024x768 pixels.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Snapshots of 6 pristine 3D videos used to create the 3D-HEVC video
database. (a) Hall2, (b) Street, (c) Dancer, (d) GTFly, (e) Balloons, (f) Shark.

Fig. 2. Left drawing is the SI and TI of texture video; right drawing is the
DSI and DTI of depth video

B. Design of Processing Conditions

In this subjective study, we are interested in (1) the influ-
ence of symmetric and asymmetric 3D-HEVC compression on
the quality of binocular perception, (2) the visibility of 3D-
HEVC compression artifacts in different presence of depth,

TABLE I. PROCESSING CONDITIONS (HRCS)

Num HRCID QP,base-view
/dependent-
view

Baseline

1 HRC001 - 2D/Zero baseline
2 HRC002 25,25 2D/Zero baseline
3 HRC003 35,35 2D/Zero baseline
4 HRC004 45,45 2D/Zero baseline
5 HRC005 25,35 2D/Zero baseline
6 HRC006 25,40 2D/Zero baseline
7 HRC007 25,45 2D/Zero baseline
8 HRC008 30,40 2D/Zero baseline
9 HRC101 - 3D,short-baseline
10 HRC102 25 25 3D,short-baseline
11 HRC103 35 35 3D,short-baseline
12 HRC104 45 45 3D,short-baseline
13 HRC105 25 40 3D,short-baseline
14 HRC106 25 50 3D,short-baseline
15 HRC107 30 40 3D,short-baseline
16 HRC108 30 50 3D,short-baseline
17 HRC109 40 50 3D,short-baseline
18 HRC201 - 3D,wide-baseline
19 HRC202 25 25 3D,wide-baseline
20 HRC203 35 35 3D,wide-baseline
21 HRC204 45 45 3D,wide-baseline
22 HRC205 25 40 3D,wide-baseline
23 HRC206 25 50 3D,wide-baseline
24 HRC207 30 40 3D,wide-baseline
25 HRC208 30 50 3D,wide-baseline
26 HRC209 40 50 3D,wide-baseline

and, (3) the relationship between video quality, depth quality
and overall experience of stereoscopic video quality. As a
result, we design the Hypothetic Reference Circuits (HRCs)
as shown in Table I, to create the Processed Video Sequences
(PVS). HRC and PVS are terminologies used in the VQEG
[16].

We control the camera baseline as follows to obtain videos
with different depth: 1) monoscopic (2D) video, where left
and right views correspond to the same camera number in
the multiview sequence, 2) short-baseline video (3D short
baseline), whose 2 views correspond to the recommended 2
views in [15], 3) Wide-baseline video (3D wide baseline),
whose views correspond to the right-most and the left-most
views of the recommended 3 views in [15].

In 3D-HEVC compression scheme, the inter-view correla-
tion between two views is explored to improve compression
efficiency. Specifically, one view is encoded as base view
using HEVC standard, and the dependent view is encoded by
exploring inter-view prediction and the inter-frame prediction
as well. To generate asymmetric compression artifacts, we set
the quantization parameter (QP) of base view and dependent
view differently. We further put compression artifacts against
different depth levels to discover the visibility of 3D-HEVC
artifacts in different presence of depth (i.e., different baseline
groups in TABLE I) . To create the PVSs with zero baseline,
the same camera video is used to create the distorted videos of
left view and right view. The video is essentially compressed
with HEVC to generate different artifact levels.

C. Subjective Test Methods

Depth sensation and the annoyance of compression distor-
tion are two major factors that influence viewer’s experience
of quality, when one watches 3D-HEVC compressed video.
The video quality and depth quality were measured using
single stimulus method ACR-HR on 5 discrete scales with
1 for bad quality and 5 for excellent quality, according to



the recommendation in ITU-R BT.2021 [4]. The viewers were
instructed that video quality refers the perceived quality of
the pictures, and depth quality refers to the ability of the
video to deliver an enhanced sensation of depth. Moreover,
we measured the overall quality of experience using ACR-
HR, and viewers were instructed in the training phase to
comprehensively consider the video quality and depth quality,
but not limited to these.

28 non-expert student subjects (assessors) aged from 21
to 26 years old participated in the subjective test. All par-
ticipants had a visual acuity above 1.0 and passed the color
vision test (Ishihara plats) and stereo vision test (RANDOT).
The 3D display is 55-inches SAMSUNG UA55HU8500J 3D
television with shuttle glasses. The viewing distance is about
2 meters. Before the formal test, there are an instruction and a
training phase to make a subject get familiar with the test and
establish a stable assessment criteria. The formal subjective
test including 156 PVSs is split into three sessions to avoid
the viewers being fatigue or bored. The display order of PVSs
was random for each subject. When a PVS was displayed,
there was an interface for the subject to input his assessment of
video quality, depth quality, and overall QoE sequentially. The
rating interface was implemented properly so that no viewing
discomfort or mode-switch interruption were introduced.

Post-processing of the collected quality scores was per-
formed to screen out the subject whose correlation with the
average scores of all subjects was lower than 0.75. Finally,
there are 22 valid subjects (13 males and 9 females).

III. ANALYSIS OF 3D-HEVC DATABASE

Firstly, we analyze the suitability of the evaluation methods
used in creating the database. Secondly, we investigate the
influential factors to the multiple aspects of QoE for 3D videos,
and draw some conclusions based on the observations on our
database.

A. Quality of Original Sequences

In Fig. 3, for each original video content with different
camera baselines (i.e. HRC001, HRC101, HRC201), the video
quality, depth quality, and overall quality are shown separately
in sub-figure (a)(b)(c). All original videos have good video
quality (MOS > 3.5) as source videos for creating database,
as shown in Fig. 3(a). Controlling camera baseline indeed
effectively changes depth sensation, as shown in Fig. 3(b).
Moreover, it can be observed that 2D videos without disparity
also deliver some depth sensation depending on the charac-
teristics of the video content. Detail analysis will be done in
subsection E.

It is interesting to notice that video quality varies little with
the increase of depth sensation, as shown in Fig. 3(a). However,
depth sensation indeed contributes positively to the overall
quality of experience as shown in Fig. 3(c), especially when
comparing 3D video with 2D video. Disparity information
produces a compelling sense of depth, which defines the added
value of stereoscopy.

B. Subjects’ agreement

For each PVS, 22 valid subjects gave their opinion scores.
We calculate the 95% confidence interval (CI95) according to

(a) video quality (b) depth quality (c) overall QoE

Fig. 3. MOS for original monoscopic and stereoscopic sequences

TABLE II. AVERAGE OF 95% CI OF 156 PVSS

Video quality Depth quality Overall quality
0.31 0.37 0.30

ITU-T BT500, which is influenced by the opinion variation
between subjects. It means that the difference between the
experimental mean score and the ‘true’ mean score (for a
very high number of subjects) is smaller than the CI95 with a
probability of 95%. The average of CI95 for all PVSs is shown
in Table II separately for the video quality, depth quality, and
overall QoE. It can be seen that the subjects have arrived at a
reasonable agreement on the perceptual quality. Therefore, the
MOS values obtained can be regarded as the ground truth.

C. Relationship of Multidimentional Qualities

In Fig. 4, we average the MOS across six video contents
for each HRC. The upper bound of the interval around an
average MOS point corresponds to the maximum MOS of the
six video contents, and the lower bound corresponds to the
minimum.

We can observe that, first, video quality is influenced
more by compression levels and video content than by the
varied depth ranges (i.e. zero baseline, short baseline, wide
baseline), as shown in Fig. 4(a). Second, depth quality varies
only slightly with video compression levels with a maximum

Fig. 4. (a) MOS of video quality for each HRC; (b) MOS of depth quality
for each HRC; (c) MOS of overall quality for each HRC



Fig. 5. Compare video quality with overall quality

TABLE III. CORRELATION BETWEEN THE QUALITY DIMENSIONS

Video quality vs.
depth quality

Video quality vs.
overall QoE

Depth quality vs.
overall QoE

0.2587 0.8936 0.6412

MOS difference less than 1 point, given a camera baseline,
as shown in Fig. 4(b). Third, overall quality in Fig. 4(c) is
jointly determined by video quality and depth quality, but
compression artifact is a dominant factor to the QoE compared
to the varying depth range. For 156 PVSs, we calculate the
correlation between video quality, depth quality, and overall
quality, which is shown in Table III. The results confirm these
observations.

It is worth noting that the added value of depth sensation
also exists even in 3D videos with poor compression artifacts,
e.g. HRC number 12 and 21, as can be observed by comparing
Fig.4(a) and Fig.4(c). This observation contradicts the conclu-
sion in [17] that the experienced added value of stereoscopic
depth is visible only if the artifact level is low.

To investigate this discrepancy, we draw Fig. 5 to better
illustrate the rating difference between video quality and over-
all QoE. Some interesting conclusions can be drawn. Firstly,
subjects assessing overall QoE tend to be reluctant to give
higher score than video quality score, when the video quality
is fairly good (e.g. above 3 points). A potential reason is
that subjects tend to reserve some margin for considering
depth quality when they use a comprehensive criteria to assess
overall QoE. This explanation can be further confirmed by
the observation that the overall quality score is increased to
emulate the video quality when depth range is increased from
zero baseline to wide baselines. Secondly, subjects tend to be
reluctant to give worse overall QoE score when the video
quality is poor (below 2.5 points), for the same reason of
comprehensive criteria, by considering the added value of
depth sensation. This explanation is similarly confirmed by
the fact that the difference between overall QoE and video
quality increases with the increased baselines when the video
quality is poor, as shown by HRC number 4, 12, 21.

Notice that a novel quality evaluation method was used in
[17] to combine a conventional quantitative psychoperceptu-
al evaluation and a qualitative descriptive quality evaluation
based on the individual’s own vocabulary. Therefore, the
discrepancy may arise from different evaluation methods and
different interpretation of quality scales.

(a) (b)

Fig. 6. The influence of video characteristics on video quality at large, (a)
SI/TI of video contents, (b) variation of MOS with video contents

Fig. 7. Video quality of symmetrically and asymmetrically compressed video
at different depth range

D. Key Factors to Video Quality

Video quality is dominantly determined by the 3D-HEVC
compression levels as shown in Fig. 4(a). It is secondarily
influenced by the characteristics of video content. The MOS
difference between different video content under the same QP
condition can be as large as up to 1.5 points as shown, for
examples, by HRC number 11, 17, 26 of Fig. 4(a).

To understand how video characteristics may influence
video quality, we average the MOSs of PVSs of each video
content across the HRCs, and derived Fig. 6(b). For the
convenience of readers, Fig. 1(a) is repeated in Fig. 6(a). It can
be seen that video contents having either larger SI or larger
TI values (e.g. ‘Shark’, ‘Dancer’,‘GTFly’) tend to have higher
video quality under the same QP settings. Video content “Hall”
having small SI and TI value has lower quality. This may be
due to the fact that the compression artifact in the smooth area
of the video is more visible under the same QP settings.

Video quality is hardly influenced by the varied depth range
in the symmetric compression case, no matter the QP is small
or large, as shown in Fig. 7. However, in the asymmetric
compression case, it is slightly better in the wider depth range
case when the QPs of both view are not larger than 40.

E. Key Factors to Depth Sensation

Since depth quality varies only slightly with HRCs having
different compression levels as shown in Fig. 3(b), we derived
the average MOS of each video content across HRCs and ob-
tained Fig. 8. It is clear that the characteristics of video content
and depth range are two main factors to depth quality variation.



Fig. 8. Depth quality varies significantly with video contents and the camera
baselines

Disparity significantly increases the depth sensation as shown
by comparing the green curve with the blue curve. Besides,
the 2D video without disparity also presents depth cues. For
example, the motion information may lead to the sense of
perspective, which depends heavily on content characteristics.

IV. PROPOSED BITSTREAM-LEVEL QUALITY MEASURE

A. Proposed Metric

Based on our 3D-HEVC video database, we propose a no-
reference 3D-HEVC bitstream-level quality assessment model
to assess the perceived quality of the stereoscopic video. The
block diagram of the proposed model is shown in Fig. 9. It
consists of three steps.

3D-HEVC Video 
Stream

Extract relevant 
features

avgQPR

avgQPL

avgvarR-
Iframes

avgvarR-
Bframes

SVR final model
Estimated 

quality

Fig. 9. The block diagram of the proposed NR VQA model

Firstly, we parse the 3D-HEVC video bit-stream and ex-
tract some parameters such as quantization parameters (QP)
of the base view and the dependent view, and the variance
of the prediction residuals of coding blocks (CU) of base
view in the luminance channel. Secondly, four features are
derived from the extracted parameters, namely, the average QP
of base view (avgQPR), the average QP of dependent view
(avgQPL), average variance of CUs’ prediction residuals of
I-frames (avgvarR-Ifrms), and the average variance of CUs’
prediction residuals of B-frames at the second inter-frame
prediction level of the GOP structure (avgvarR-Bfrms). Finally,
we put all features into the Support Vector Regression (SVR)
model to predict the ultimate objective video quality:

Quality = SV R(QPR,QPL, varRIframes,

varRBframes) (1)

SVR maps features into higher-dimensional space and predicts
the 3D video quality [18]. We use the ϵ-SVR with the radial
basis kernel function and the loss function parameter to 0.25.

According to the subjective study of 3D video quality
in Section III, the dominant factor to 3D video quality is

compression levels, which is essentially controlled by QP
settings of base view and dependent view. The secondary factor
is the characteristics of video content. We find that the average
variance of I-frames of base view reflect the texture complexity
of video content to a degree. Whereas, the average variance
of B-frames of base view reflect the temporal complexity of
video content to some degree. With these four key features,
our preliminary model is expected to deliver reasonably good
performance.

B. Performance Analysis

We did 100 times of cross validation with 80% samples
randomly selected for training and other 20% for test on
the 3D-HEVC database. The performance is evaluated by
computing the Spearman Rank Order Correlation Coefficient
(SROCC) [15], the Pearson Correlation Coefficient (PCC),
and the Root Mean Square Error (RMSE) between predicted
score and MOS. SROCC assesses how well the relationship
between two variables can be described using a monotonic
function. PCC measures the linear relationship between a
models performance and the subjective data. RMSE provides
a measure of the prediction accuracy. SROCC and PCC takes
value from [−1, 1], with the values close to 0 declaring very
bad or no correlation and the values close to 1 representing
high positive correlation.

The performance of the proposed model is shown in Table
IV. The median, mean, and standard deviation of the SROCC,
PCC, and RMSE values of 100 times cross validation are
reported. It can be seen that the model achieves a fairly good
performance on our database.

TABLE IV. PERFORMANCE OF THE PROPOSED NR METHOD

Median value Mean value Standard deviation
SROCC 0.864 0.846 0.079

PCC 0.922 0.914 0.044
RMSE 0.400 0.407 0.103

C. Comparison with FR metrics

In general, a good Full-Reference perceptual quality as-
sessment metric should be more accurate than a No-Reference
method. Hence, we compared the proposed bitstream-layer
No-Reference model with some widely used Full-Reference
2D quality assessment metrics, such as PSNR, FSIM [19],
MS-SSIM [20] and VQM (i.e. ITU-T Rec. J.144) [21]. Since
PSNR, SSIM, FSIM, MS-SSIM are image quality metrics,
SROCC of a 3D video is obtained by averaging SROCCs
across all frames of a PVS. VQM is a 2D video quality
assessment method, thus, we averaged SROCCs of left-view
and right-view videos to derive the SROCC of a 3D video. As
can be seen in Table V, on our 3D-HEVC video database, the
proposed bitstream-layer No-Reference model performs better
than these classic 2D Full-Reference perceptual video quality
assessment metrics.

Further, we compared the performance of the proposed
model with a state-of-the-art pixel-level Full-Reference 3D
video assessment method [9]. The key idea of the method in
[9] is a 2D-to-3D weighting scheme that accounts effectively
binocular perception mechanism of human visual system. The
SROCC performance by applying the weighting scheme to the
widely-used FR 2D metrics is given also in Table V. All of



TABLE V. SROCC PERFORMANCE OF PIXEL-LEVEL FR METRICS ON
OUR 3D-HEVC DATABASE

Method Direct Average Weighted Average[9]
PSNR 0.482 0.483
SSIM 0.415 0.416
FSIM 0.814 0.816

MS-SSIM 0.689 0.690
VQM 0.771 0.772

Proposal 0.846

the frame-based video quality assessment method are using
the energy-based weighting algorithm on each frame except
for VQM, which produces a sequence-level quality score and
use the weighting algorithm at sequence level.

It can be seen that the performance of the proposed
bitstream-layer 3D video quality assessment model is more
effective than the state-of-the-art Full-Reference video quality
assessment based on the pixel domain. This result is reasonable
because the key features for compression artifacts are QP and
video complexity, which can be more easily and accurately
obtained at the bitstream level than at the media level (i.e.
in the pixel signal domain). We made the performance com-
parison only on our database, because it is currently the only
3D-HEVC video database with compressed bitstream so far as
we know.

V. CONCLUSION AND FUTURE WORK

We build a 3D-HEVC video database and propose a No-
Reference bitstream-level objective quality assessment model
based on an analysis of the key factors to video quality.
The experiment results validate the effectiveness of the model
by comparing it with some state-of-the-art 2D and 3D Full-
Reference pixel-level objective quality assessment metrics.

In the future, we will further explore features from inter-
frame and inter-view prediction to improve our model. More
state-of-the-art 2D and 3D metrics will be taken into consid-
eration for the comparative study of model performance.

Moreover, we will extend our database to investigate the
influence of 3D-HEVC compression on the synthesized view
and make the whole 3D-HEVC bitstream video database public
to the research community. We will also consider using the Pair
Comparison method [22] for the assessment of QoE, which
has the advantage of avoiding multiple quality dimensions and
interpretation issues.
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